期刊文献+

有像差情况下的全息光栅拼接研究 被引量:5

Study of Gratings Tiled by Holographic Exposure with Wave Aberration
原文传递
导出
摘要 激光约束核聚变系统需要大口径脉冲压缩光栅。全息光栅拼接法是制造大口径光栅的重要手段。针对有像差的全息曝光系统,提出了一种拼缝处光栅对准拼接方法。为研究像差对光栅拼接特性的影响,用随机波面进行了光栅模拟拼接,计算了远场衍射能量分布与拼接误差的关系。实验拼接了(150+150)×200 mm2口径光栅,其拼接均方根误差值为0.034λ,峰-峰误差值为0.110λ。利用光栅±1级衍射波面,计算得到了曝光系统像差,并模拟了拼缝处最小拼接误差,其均方根误差值为0.016λ,峰-峰误差值为0.105λ。结果表明,拼接误差与理论模拟结果相近。该误差不会造成远场衍射光斑能量明显下降。由此证明了该方法的可行性。 Large-aperture pulse compression gratings are needed by laser confinement fusion system. Tiled-grating made by holographic exposure is an important way to manufacture large aperture gratings. A method is proposed to align the gratings for the exposure system with wave aberration. In order to study the effect of the wave aberration on the characteristics of tiled-grating, the random wave fronts are used to simulate the tiled-gratings.The relationship between the distribution of far-field diffraction energy and the tiling-error is calculated. A grating of(150+150)×200 mm2 is made experimentally. The root-mean-square value of the tiling-error is 0.034λ and the peak to peak value is 0.110λ. The ± 1st diffraction wave fronts of the grating are used to calculate wave aberration of the exposure system. The minimum value of the tiling-error is simulated theoretically. The root-mean-square value of the error is 0.016λ and the peak to peak value is 0.105λ. The results show that the tiling-error is close to the simulated data. The far-field diffraction intensity can not be decreased obviously by the tiling-error. It is proved that the method proposed in this article is feasible.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第3期34-39,共6页 Acta Optica Sinica
基金 国家自然科学基金(61178046 60808013) 江苏省高校自然科学研究重大项目(11KJA14001) 江苏高校优势学科建设工程资助项目 苏州市应用基础研究项目(SYG201115)
关键词 衍射光栅 拼接光栅 波像差 干涉条纹 脉冲压缩 diffraction grating tiled-grating wave aberration interference fringe pulse compression
  • 相关文献

参考文献7

二级参考文献76

共引文献44

同被引文献23

  • 1王仕瑶.信息光学理论与应用[M].北京:北京邮电大学出版社,2009.270-287.
  • 2Mazzacurati V, Ruocco G. The super-gratings: How to improve the limiting resolution of grating spectrometers [J]. Optics Communications, 1990, 76(3-4) : 185-190.
  • 3Dekker H, D'Odorico S. UVES, the UV-visual eehelle spectrograph for the VLT[J]. The Messenger, 1992, 70: 13-17.
  • 4Vogt S S, Allen S L, Bigelow B C, et al: HIRES: The high-resolution echellespectrometer on the Keck 10-mTelescope [C]. SPIE, 1994, 2198: 362-375.
  • 5Tull R G. High-resolution fiber-coupled spectrograph of the Hobby-Eberly telescope[C]. Astronomical Telescopes & Instrumentation. International Society for Optics and Photonics, 1998, 3355: 387-398.
  • 6Qiao J, Kalb A, Guardalben M J, et al: Large-aperture grating tiling by interferometry for petawatt chirped-pulse- amplification systems[J]. Optics Express, 2007, 15(15): 9562-9574.
  • 7Forget N, Felix C, Baynard E, et al: Diode-pumped regenerative amplifier front end for the petawatt laser chain at LULI[M]. Uhrafast Optics IV, 2004: 315-320.
  • 8Habara H, Xu G, Jitsuno T, et al: Pulse compression and beam focusing with segmented diffraction gratings in a high- power chirped-pulse amplification glass laser system [J]. Optics Letters, 2010, 35 (11) : 1783-1785.
  • 9Harimoto T. Far-field pattern analysis for an array grating compressor[J]. Japanese Journal of Applied Physics, 2004, 43 (4A) : 1362-1365.
  • 10Hu Y, Zeng L, Li L. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths [J]. Optics Communications, 2007, 269(2): 285-290.

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部