期刊文献+

高光谱图像的分布式近无损压缩 被引量:6

Distributed Near Lossless Compression of Hyperspectral Images
原文传递
导出
摘要 星载高光谱图像的有效压缩已经成为高光谱遥感领域亟待解决的难题。分布式信源编码具有较低的编码复杂度与良好的抗误码性,在高光谱图像压缩领域具有广阔的应用前景。提出了一种基于多元陪集码的高光谱图像分布式近无损压缩算法。根据多元陪集码的Slepian-Wolf无损编码的压缩过程,提出了面向高光谱图像分布式近无损压缩的最优量化方案,使得高光谱图像在给定目标码率条件下的失真达到最小,在此基础上对量化值进行Slepian-Wolf无损编码,从而实现了高光谱图像的分布式近无损压缩。实验结果表明,与典型的传统算法相比,该算法取得了较好的近无损压缩性能和较低的编码复杂度。 The efficient compression of onboard hyperspectral images has been a difficult problem which needs to be resolved urgently. Low encoding complexity and excellent error resilience are provided by distributed source coding, which has wide applied foreground in the field of hyperspectral images compression. For the problem of onboard compression for hyperspectral images, a distributed near lossless compression algorithm based on multi-level coset codes is proposed. According to the procedure of SlepianWolf lossless coding based on multi- level coset codes, an optimal quantization scheme for distributed near lossless compression of hyperspectral images is presented, which makes the distortion of hyperspectral images minimum under the given target bit-rates. Slepian-Wolf lossless coding is performed on the quantized values,which realizes the distributed near lossless compression of hyperspectral images. Experimental results show that the proposed algorithm can obtain both high near lossless compression performance and low encoding complexity compared with those existed classical algorithms.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第3期71-78,共8页 Acta Optica Sinica
基金 国家自然科学基金(41201363) 中国博士后基金特别资助(2013T60935) 中国博士后基金面上项目(2013M542559)
关键词 图像处理 高光谱图像 近无损压缩 分布式信源编码 陪集码 标量量化 image processing hyperspectral images near lossless compression distributed source coding coset code scalar quantization
  • 相关文献

参考文献2

二级参考文献17

共引文献26

同被引文献56

  • 1王晓飞, 阎秋静, 张钧萍, 等. 基于相关向量机的高光谱图像超分辨率算法[J]. 中国激光, 2014, 41(s1): s114001.
  • 2Zhang L, Zhang L, Tao D, et al.. Hyperspectral remote sensing image subpixel target detection based on supervised metric learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4955-4965.
  • 3Yuan Y, Wang Q,Zhu G. Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 620-630.
  • 4Reed I S, Yu X L. Fast adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1990, 38(10): 1760-1770.
  • 5Acito N, Matteoli S, Diani M, et al.. Complexity-aware algorithm architecture for real-time enhancement of local anomalies in hyperspectral images[J]. Journal of Real-Time Image Processing, 2013, 8(1): 53-68.
  • 6Wang T, Du B, Zhang L. A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection [J]. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 626-637.
  • 7Hsueh M, Chang C I. Adaptive causal anomaly detection for hyperspectral imagery[C]. IEEE International Symposium on Geoscience and Remote Sensing, Anchorage, 2004, 5: 3222-3224.
  • 8Matteoli S, Veracini T, Diani M, et al.. A locally adaptive background density estimator: An evolution for rx-based anomaly detectors[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 323-327.
  • 9Chen S Y, Wang Y,Wu C C, et al.. Real-time causal processing of anomaly detection for hyperspectral imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1511-1534.
  • 10Wang Y, Zhao C, Chang C I. Anomaly detection using sliding causal windows[C]. IEEE International Symposium on Geoscience and Remote Sensing, Anchorage, 2014: 4600-4603.

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部