期刊文献+

一个类Lorenz系统的Hopf分岔分析及分岔控制 被引量:5

Hopf Bifurcation Analysis and Bifurcation Control of a Lorenz-Like System
下载PDF
导出
摘要 对一个新的类Lorenz系统的Hopf分岔行为及分岔控制问题进行研究。首先,通过分岔稳定性指标判定系统的分岔类型。然后,分别对系统施加线性和非线性控制器。在线性控制部分,根据Routh-Hurwitz原理,讨论了线性参数对分岔位置的影响;在非线性控制部分,利用Normal Form(规范形)方法求出系统的Hopf分岔规范式,并通过规范式系数讨论非线性参数对Hopf分岔类型及极限环幅值的影响。结果表明当非线性参数满足一定条件时,原系统的Hopf分岔类型可以被改变,并且在超临界情况下,极限环幅值会随着非线性参数的增加而增加。 Hopf bifurcation behavior and bifurcation control of a new Lorenz-like system are studied in this paper.Firstly,Hopf bifurcation type is determined by bifurcation stability norm.Then the linear controller and the non-linear controller are applied to control the original system respectively.In the section of linear control,the effect of linear parameter on the position of Hopf bifurcation is discussed by Routh-Hurwitz criterion;In the section of non-linear control,the Hopf bifurcation Normal Form of controlled system is obtained by using direct Normal Form method,and the effects of nonlinear parameter on amplitude of limit cycle and Hopf bifurcation type are discussed by coefficient of Normal Form.Discussions show that if non-linear parameter satisfies certain condition,bifurcation type of original system will be changed,and the periodic solution amplitude will increase with the parameter increasing.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2015年第1期96-103,共8页 Complex Systems and Complexity Science
基金 吉林省发展规划项目(20130101065JG) 国家自然科学基金(11201057) 吉林省教育厅"十二五"科技研究项目(吉教科合字[2013]第429号)
关键词 类LORENZ系统 HOPF分岔 分岔控制 规范形 Lorenz-like system Hopf bifurcation bifurcation control normal form
  • 相关文献

参考文献13

  • 1Lorenz E N. Deterministic non-periodic flows[J].J Atmos Sci, 1963, 20: 130 - 14lo.
  • 2Tucker W. The Lorenz attractor exists[J]. C R Acad Sci Pairis , 1999, 328: 1197 -1202.
  • 3Stewart I. The Lorenz attract or exists[J]. Nature, 2002, 406: 948 - 949.
  • 4Pang S Q, Liu YJ. A new hyperchaotic system from the Lu system and its control[J].Journal of Computational and Applied Mathematics, 2011, 235(8): 2775 - 2789.
  • 5Mahmoud E E. Dynamics and synchronization of new hyperchaotic complex Lorenz system[J]. Mathematical and Computer Modelling, 2012, 55(7/8): 1951 -1962.
  • 6Niu YJ, Wang X Y. A new hyperchaotic system and its circuit implementation[J]. Commun Nonlinear Sci Numer Simulat , 2010, 15(11): 3518 - 3524.
  • 7Mkaouar H, Boubaker O. Chaos synchronization for master slave piecewise linear systems: application to Chua's circuit[J]. Commun Nonlinear Sci Numer Simulat , 2012, 17 (3) :1292 -l302.
  • 8SprottJ C. Some simple chaotic flows[J]. Physical Review E, 1994, 50(2) :647 - 650.
  • 9Yang Q G, Chen G R. A chaotic system with one saddle and two stable node-foci[J]. IntJ Bifurc Chaos, 2008, 18( 5) : 1393 - 1414.
  • 10李春来,禹思敏.一个新的超混沌系统及其自适应追踪控制[J].物理学报,2012,61(4):22-28. 被引量:29

二级参考文献19

  • 1王建根,赵怡.Chen系统和一类统一混沌系统的同步控制[J].电路与系统学报,2004,9(6):57-60. 被引量:9
  • 2王繁珍,齐国元,陈增强,张宇辉,袁著祉.一个新的三维混沌系统的分析、电路实现及同步[J].物理学报,2006,55(8):4005-4012. 被引量:38
  • 3Wu Z, Yu P 2006 IEEE Trans on Automatic Control 51 1019.
  • 4Wang Y,Murray R M 2002 Automatica 38 611.
  • 5Goman M G, Khramtsovsky A V 1998 Philosophical Transactions: Mathematical, Physical and Engineering Sciences 356 2277.
  • 6Venkatasubramanian V, Sebattler H, Zaborszky J 1995 IEEE Trans on Automatic Control 40 1992.
  • 7Yu P, Chen G R 2004 International Journal of Bifurcation and Chaos 14 1683.
  • 8Rossler O E 1976 Phys. Lett. A 35397.
  • 9吴志强.1996.博士学位论文,天津大学.
  • 10Lorenz E N. Deterministic nonperiodic flow[J]. J Atmos Sci, 1963,20: 130.

共引文献50

同被引文献41

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部