摘要
Solid-state nanopores are generally considered as an indispensable element in the research field of fundamental ion transport and molecular sensing. The im- provement in fabrication and chemical modification of the solid-state nanopores remains increasingly updated. During the last decades, numerous works have been reported on the nanopore-based sensing applications. More and more new analytical methods using nanopore-based devices are emerging. In this review, we highlight the recent progress on the analytical methods for the interdisciplinary and fast- growing area of nanopore research. According to the dif- ferent types of the electrical readout, whether it is steady- state ionic current or transient current fluctuation, the nanopore-based sensing and analysis can be generally di- vided into two categories. For the first type, the electrical readout shows a stable blockade or reopening of the nanopore conductance in the presence of target analytes, termed steady-state analysis, including the conductance change, electrochemical analysis, and two-dimensional scanning and imaging. The other type is based on the transient fluctuation in the transmembrane ionic current, termed transient-state analysis, including the noise analysis, transient ion transport, and transverse tunneling current. The investigation of solid-state nanopores for chemical sensing is just in its infancy. For further research work, not only new nanopore materials and chemical modifications are needed, but also other non-electric-based sensing techniques should be developed. We will focus our future research in the framework of bio-inspired, smart, multiscale interfacial materials and extend the spirit of binary cooperative complementary nanomaterials.
受生命体系中蛋白质孔道结构与功能的启发,基于固体材料的各种纳米孔道结构和纳流体器件的研究逐渐成为来自物理、化学、纳米、材料、机械工程等多学科研究人员所关注的焦点.因此,固体纳米孔道也成为离子输运和分子传感研究领域不可或缺的一个元素.本文主要从电学输出信号的角度,系统归纳了稳态离子电流和瞬变电流波动2种类型的纳米孔道的传感分析方法.目前,由于固体纳米孔道的分析检测研究仅处于起始阶段,对于未来纳米孔道的研究和应用,不仅需要新的材料和修饰方法,而且需要将纳米孔和非电流的传感技术相结合.而学习自然,构筑受生物启发的仿生智能人工纳米孔道系统,可以为未来的分析检测技术提供更多的应用价值.
基金
supported by the National Basic Research Program of China (2011CB935700)
the National Natural Science Foundation of China (21103201, 11290163, 91127025, 21121001)
The Chinese Academy of Sciences is gratefully acknowledged under the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-M01)