期刊文献+

基于直觉模糊C-均值的客户聚类和识别方法 被引量:4

Customer Clustering and Pattern Identification Approach Based on Vague C-means
下载PDF
导出
摘要 客户聚类和识别是大规模客户化生产中产品/服务快速有效设计的基础.考虑客户需求信息的不确定性,提出了基于直觉模糊C-均值的客户聚类算法.针对传统基于欧式距离的C-均值聚类方法无法计算直觉模糊数组间距离的缺点,采用直觉模糊交叉熵方法处理算法中的距离计算问题.同时,直觉模糊交叉熵还用来计算新客户和各客户类间的偏好相似度,进行客户识别.最后以某工程机械企业服务开发中的客户聚类和识别为例,验证了所提方法的有效性. In the mass customization production,customer clustering and identification are the basis of quick and effective product/service design.Considering the uncertainty of customer requirements,a customer clustering and pattern identification approach based on vague C-means was proposed.Aiming at the problem that the traditional fuzzy C-means based on Euclidean distance cannot deal with the distance between vague sets,a vague cross-entropy approach was adopted to deal with the distance calculating problem in the C-means clustering algorithm.At the same time, the vague cross-entropy was also applied in calculating the similarity between new customer and different customer groups,and then the customer identification was realized.Finally,a case study of customer clustering and identification in a mechanical company’s service development was presented to illustrate the effectiveness of the proposed approach.
出处 《上海理工大学学报》 CAS 北大核心 2015年第1期13-17,35,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(71301104 71271138) 上海市教委科研创新基金资助项目(14YZ088) 上海市一流学科建设资助项目(S1201YLXK) 高等学校博士学科点专项科研基金资助项目(20133120120002 20120073110096) 沪江基金资助项目(A14006)
关键词 大规模客户化生产 客户聚类 C-均值 直觉模糊集 交叉熵 mass customization customer clustering C-means vague set cross-entropy
  • 相关文献

参考文献13

  • 1Shao X Y,Wang Z H,Li P G,et al.Integrating data mining and rough set for customer group-based discovery of product configuration rules[J].International Journal of Production Research,2006,44(14):2789-2811.
  • 2Hong G,Xue D,Tu Y.Rapid identification of the optimal product configuration and its parameters based on customer-centric product modeling for one-of-a-kind production[J].Computers in Industry,2010,61:270-279.
  • 3Gau W,Buehrer D.Vague sets[J].IEEE Transactions on Systems,Man and Cybernetics,1993,23(2):610-614.
  • 4Mitra S,Pal S K,Mitra P.Data mining in soft computing framework:a survey[J].IEEE Transactions on Neural Networks,2002,13(1):3-14.
  • 5李云先,彭敦陆.大学生网络行为方式的模糊分析[J].上海理工大学学报,2013,35(2):107-112. 被引量:3
  • 6杨晓慧,王莉莉,李登峰.一种新的层次谱聚类算法[J].上海理工大学学报,2014,36(1):49-52. 被引量:2
  • 7曹易,张宁.一种改进的模糊C-均值聚类算法[J].上海理工大学学报,2012,34(4):351-354. 被引量:8
  • 8李香英.区间直觉模糊连续交叉熵及其多属性决策方法[J].计算机工程与应用,2013,49(15):234-237. 被引量:7
  • 9Zhang Q S,Jiang S Y.A note on information entropy measures for vague sets and its applications[J].Information Sciences,2008,178(21):4184-4191.
  • 10Geng X,Chu X,Zhang Z.A new integrated design concept evaluation approach based on vague sets[J].Expert Systems with Applications,2010,37:6629-6638.

二级参考文献54

共引文献16

同被引文献55

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部