期刊文献+

带变量核的分数次积分算子在加权Morrey空间上的有界性 被引量:2

Boundedness of fractional integral operators with variable kernels on weighted Morrey spaces
下载PDF
导出
摘要 利用核函数Ω的性质,考虑了带变量核的分数次积分算子TΩ,α在加权Morrey空间上的有界性,证明了当Ω满足零阶齐次条件与消失距条件时,带变量核的分数次积分TΩ,α是从Lp,k(ωp,ωq)到Lq,kq/p(ωq)的有界算子,从而推广了以往非变量核的相关结果. By using the properties of the functionΩ,the weighted boundedness results on the Morrey spaces were considered for the fractional integral operators TΩ,αwith variable kernels.It was showed that the TΩ,αwere bounded operators fromLp,k(ωp,ωq)to Lq,kq/p(ωq)when it met the zero order homogeneous conditions and vanishing moment condition,which extended no-variable kernel results that had been achieved in previous research.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2015年第1期21-24,共4页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11161402) 甘肃省青年科技基金资助项目(1308RJYM024) 应阳市青年科技基金资助项目(QJ201302) 陇东学院青年科技创新项目(XYLK1301)
关键词 加权Morrey空间 分数次积分算子 变量核 weighted Morrey spaces fractional integral operators variable kernel
  • 相关文献

参考文献9

  • 1Muckenhoupt B,Wheeden R L.Weighted norm inequalities for singular and fractionalintegrals[J].Trans Amer Math Soc,1971,161:249-258.
  • 2Ding Y.Weak type bounds for a class of rough operaters with powerweights[J].Proc Amer Math Soc,1997,125:2939-2942.
  • 3Ding Y,Lu S Z.Weighted norm inequalities for fractional integral operaters with roughkernel[J].Canad J Math,1998,50:29-39.
  • 4Komori Y,Shirai S.Weighted Morrey spaces and a singular integral operater[J].Math Nachr,2009,282:219-231.
  • 5王素萍,岳晓红,邵旭馗.变量核多线性分数次极大算子的一致有界性[J].安徽大学学报(自然科学版),2013,37(4):28-31. 被引量:8
  • 6邵旭馗,陶双平.带变量核的Marcinkiewicz积分交换子的加权Lipschitz估计[J].系统科学与数学,2012,32(7):915-921. 被引量:20
  • 7邵旭馗,陶双平,王素萍.带变量核的参数型Marcinkiewicz积分在弱Hardy空间上的有界性[J].应用数学,2013,26(1):177-181. 被引量:10
  • 8Garcia-Cuerva J,Rubio de Francia J L.Weighted norm inequalities and related topics[M].Amsterdam:NorthHolland Publishing Company,1985.
  • 9Gundy R F,Wheeden R L.Weighted integral inequalities for nontangential maximal function Lusin area integral,and Walsh-Paley series[J].Studia Math,1974,49:107-124.

二级参考文献20

  • 1Torchinsky A, Wang S L. A note on Marcinkiewicz integral. Coll. Math., 1993, 60: 235-243.
  • 2Ding Y, Lu S Z, Yabuta K. On commutator of Marcinkiewicz integrals with rough kernel. Journ. Math. Anal. Appl., 2002, 275: 60-68.
  • 3Hu G, Yan D. On the commutator of a homogeneous Marcinkiewicz integral. Journ. Math. Anal. Appl., 2003, 283: 351-361.
  • 4Lu S, Wu H X. On the commutators of singular integrals related to block spaces. Nagoya Math. J., 2004, 173: 205-223.
  • 5Bloom S. A commutator theorem and weighted BMO. Trans Amer. Math. Soc., 1985, 292: 103- 122.
  • 6Hu B, Gu J. Necessary and sufficient conditions for boundedness of commutators with weighted Lipschitz function. Journ. Math. Anal. Appl., 2008, 340(1): 598-605.
  • 7Garcia-cuerva J, Rubio defrancia J L. Weighted Norm Inequalities and Related Top Ics. New York: North-Holland Amsterdam, 1995.
  • 8Stein E M.On the function of Littlewood-Paley, Lusin and Marcinkieicz[J]. Trans. Amer. Math. Soc. , 1958,88: 430-466.
  • 9Hormander L. Estimates for translation invariant operators in LP spaces[J]. Acta. Math .1960.104: 93.
  • 10Sakamoto M. Yabuta K. Boundedness of Marcinkiewicz functions[J]. Studia. Math . 1999.135:103.

共引文献22

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部