期刊文献+

激光重熔熔池宏微观凝固过程的实时观察 被引量:2

In Situ Observation of Macro and Micro Solidification Process in the Molten Pool during Laser Remelting
原文传递
导出
摘要 采用类金属透明模型合金SCN-Eth合金,在自主搭建的激光熔池凝固过程宏微观实时观察平台上,研究了激光重熔过程中熔池宏微观形态演化规律。研究发现,随着激光束扫描的进行,熔池及其热影响区的宏观形态都先从圆形变为椭圆形,最后演化为尾部呈"V"形的泪滴状。随着激光功率的增加,稳态熔池长度L、宽度W、尾部夹角α均增加;随着扫描速度的增大,稳态熔池长度L、宽度W、夹角α均减小;熔池长宽比随功率的增加而增大,随扫描速度的增加先增大后减小。从熔池中部到熔池尾部液固界面形貌依次呈平面→胞晶→枝晶演化,胞晶和枝晶一次间距不同,浅胞间距约为28μm,深胞间距约为42μm,枝晶间距约为65μm,胞枝晶一次间距沿固液界面增大。 In this paper,a transparent model alloy SCN-Eth alloys,in self-built visualization metal-analog laser molten pool solidification process experiment platform,are used to research the evolution of the laser molten pool macroscopic morphology and microstructure of the molten pool solidification.The main conclusions are as follows:in the unsteady evolution,both molten pool and its heat affect zone geometry from circular to elliptical,finally evolved into the tail with " V"-shaped teardropshaped.With the increase of the laser power,steady pool length L,width W,the angleαwere increased;with increasing scan speed,the steady pool length L,width W,the angleαwere less small;the length-width ratio of the molten pool increases with the increasing laser power,while,with the increasing scanning speed,the length-width ratio increases first and then decreases.From the middle of the pool to the tail of the pool,we can see the evolution of the interface morphology:plane crystal→cell→dendrites,the primary dendrite spacing of the cells and dendrites are different,the primary dendrite spacing of shallow cells about 28μm,deep cell is about 42μm,while the primary dendrite spacing of dendrites is about 65μm,the primary dendrite spacing of the cells and dendrites are increased.
出处 《应用激光》 CSCD 北大核心 2015年第1期20-24,共5页 Applied Laser
基金 973国家重点基础研究发展计划资助项目(项目编号:2011CB610402) 博士后科学基金资助项目(项目编号:2013M542384)
关键词 激光熔池 形态演化 等轴晶 实时观察 laser molten pool morphological evolution the equiaxed grain real-time observation
  • 相关文献

参考文献10

  • 1YAMADA T,SHOBU T,NISHIMURA A,et al. In-situ X-ray observation of molten pool depth during laser mi- cro welding[J]. Journal of Laser Micro Nanoengineer- ing,2012(24) : 157-163.
  • 2PETER BERGER, HELMUT HUGEL, THOMAS GRAF. Understanding Pore Formation in Laser Beam Welding[J]. Physics Procedia, 2011 (12) : .. 241-247.
  • 3LI S,CHEN G,ZHANG M,et al. Dynamic keyhole pro- file during high-power deep-penetration laser welding [J]. Journal of Materials Processing Technology, 2014, 214(3) : 565-570.
  • 4MENG WEI,LI ZHUGUO,LU FENGGUI, et al. Po- rosity formation mechanism and its prevention in laser lap welding for T-joints[J]. Journal of Materials Pro- cessing Technology, 2014,214(3) : 1658-1664.
  • 5BOLEY M,WEBER R,GRAF T. X-Ray and optical ide- ograph for 3D measurement of capillary and melt pool geometry in laser welding[J]. Physics Procedia, 2013 (41) : 481-488.
  • 6陈静,谭华,杨海欧,刘振侠,黄卫东.激光快速成形过程中熔池形态的演化[J].中国激光,2007,34(3):442-446. 被引量:27
  • 7FALLAH V, AMOOREZAEI M,PROVATAS N, et ah Phase-field simulation of solidification morphology in la- ser powder deposition of Ti-Nb alloys[J]. Acta. Materi- alia. ,2012,60(4) :1633-1646.
  • 8YIN H, FELICELLI S D. Dendrite growth simulation during solidification in the LENS process[J]. Acta Mate- rialia. ,2010,58(4) : 1455-1465.
  • 9SAVAGE W F, HRUBEC R J. Synthesis of weld solidi- fication using crystalline organic materials [J]. Welding Journal, 1972,51 (5) : 260-270.
  • 10TRIVEDI R,DAVID S A,ESHELMAN M A,et al. In situ observations of weld pool solidification using trans- parent metal-analog systems [J]. Journal of Applied Physics, 2003,93(8) :4885-4895.

二级参考文献15

  • 1刘振侠,陈静,黄卫东,吴丁毅.侧向送粉激光熔覆粉末温升模型及实验研究[J].中国激光,2004,31(7):875-878. 被引量:7
  • 2张盛海,陈铠,肖荣诗,李明星,胡治华,左铁钏.铝合金高功率CO_2激光粉末焊接[J].中国激光,2006,33(5):714-718. 被引量:6
  • 3J. Mazumder, J. Choi, K. Nagarathnam et al.. The direct metal deposition of H13 tool steel for 3-D components [J]. JOM, 1997, 49(5):55-60
  • 4P, S. Mohanty, J. Mazumder. Solidification behavior and mierostruetural evolution during laser beam-material interaction [J]. Metall. Mater. Trans. B, 1998, 29B:1269-1279
  • 5J. O. Milewski, D. J. Thoma. Development of a near net shape processing method for rhenium using directed light fabrication [J]. Materials and Manufacturing Processes, 1998, 13(5) :719-730
  • 6C. L. Atwood, M. L. Griffith, L. D. Harwell et al.. Laser spray fabrieation for net-shape rapid produet realization LDRD [R]. Sandia Report, Sandia99-0739, 1999. 1-32
  • 7M. Gaumann, S. Henry, F. Cleton et al.. Epitaxial laser metal formingl analysis of mierostrueture formation [J]. Materials Science and Engineering A, 1999, 271 (1-2): 232-241
  • 8Jae-Do Kim, Yun Peng. Melt pool shape and dilution of laser cladding with wire feeding [J]. J. Materials Processing Technology, 2000, 104(3): 284-293
  • 9F. G. Arcella, F. H. Froes. Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5) :28-30
  • 10J. Mazumder, D. Dutta, N. Kikuchi et al.. Closed loop direct metal deposition: art to part [J]. Optics and Laser in Engineering, 2000, 34(4-6) :397-414

共引文献26

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部