期刊文献+

冷却速度对Sn-Pb钎料合金组织和性能的影响 被引量:3

Effect of Cooling Speed on Microstructure and Mechanical Property of Sn-Pb Solder Alloy
下载PDF
导出
摘要 采用扫描电镜和微型拉伸试验机,研究了冷却速度对Sn-Pb钎料合金组织和性能的影响。为了得到不同冷却速度下的Sn-Pb合金,将Sn-Pb合金在300℃下熔化,分别直接在25、50、100和150℃的重油中冷却成固态。研究结果表明:冷却速度越小,Sn-Pb钎料合金的组织越大,当钎料合金在25℃重油中冷却时,钎料合金富Pb相的大小为8.7μm,而当钎料合金在150℃重油中冷却时,钎料合金富Pb相的大小为22.2μm;冷却速度越小钎料合金的强度越高,当钎料合金在25℃重油中冷却时,钎料合金的抗拉强度为26.36 MPa,而当钎料合金在150℃重油中冷却时,钎料合金的抗拉强度为31.84 MPa;钎料合金拉伸断口均表现为韧窝结构,韧窝大小随着冷却速度的降低而逐渐增大。 The effects of cooling speeds on the microstructure and mechanical property of Sn-Pb solder alloy were investigated by scanning electron microscopes and micro tensile tester. To obtain the Sn-Pb solder alloy under different cooling speed, the Sn-Pb solder alloy, which was heated to 300 ℃, is cooled in heavy oil at 25 ℃, 50 ℃, 100 ℃, and 150 ℃. The results show that the larger the cooling speed is, the tinier the microstructure is. When the solder alloy is directly cooled to 25 ℃ from 300 ℃ in heavy oil, the size of Pb-rich phase is 8.7 μm. When it is cooled to 150 ℃ directly in heavy oil, the size of Pb-rich phase is 22.2 μm. The better mechanical property can be obtained in the Sn-Pb solder alloy with a higher cooling temperature. When the solder alloy is directly cooled to 25 ℃ from 300 ℃ in heavy oil, the ultimate tensile strength is 26.36 MPa. However, when it is cooled to 150 ℃ in heavy oil directly, the ultimate tensile strength is 31.84 MPa. There are many dimples on the fracture surface of tensile samples. The size of dimple increases as the cooling temperature rises.
作者 孟涛 杨莉
出处 《热加工工艺》 CSCD 北大核心 2015年第5期44-46,共3页 Hot Working Technology
基金 江苏省自然科学基金资助项目(BK20141228) 徐州工程学院江苏省大型工程装备检测与控制重点建设实验室开放课题项目(JSKLEDC201301)
关键词 钎料合金 冷却速度 组织 力学性能 断口 solder alloy cooling rate microstrueture mechanical property fracture
  • 相关文献

参考文献6

  • 1Seo S, Kang S, Shih D, et al. An Investigation of microstructure and microhardness of Sn-Cu and Sn-Ag solders as functions of alloy composition and cooling rate [J]. Journal of Electronic Materials, 2009, 38(2): 257-265.
  • 2Wang X, Liu Y C, Wei C, et al. Effects of composition and cooling rate on the microstructure of Sn-3.7Ag-0.9Zn-Bi solders[J]. Applied Physics A, 2009, 96(4): 969-973.
  • 3Mahmudi R, Pourmajidian M, Geranmayeh A R, et al. Indentation creep oflead- free Sn-3. 5Ag solder alloy: effects ofcooling rate and Zn/Sb addition [J]. Materials Science and Engineering: A, 2013, 565: 236-242.
  • 4Prabhu K N, Deshapande P, Satyanaraya N. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature [J]. Materials Science and Engineering: A, 2012,533: 64-70.
  • 5沈骏,高后秀,刘永长,韦晨,杨渝钦.冷却速度对Sn-Ag无铅焊料微观组织和机械性能的影响[J].功能材料,2005,36(1):47-49. 被引量:6
  • 6陈海燕,林振龙,揭晓华,张海燕,郭黎.冷却速度对Sn-Bi-X合金微观组织的影响[J].铸造技术,2014,35(1):1-4. 被引量:5

二级参考文献22

  • 1沈骏,刘永长,张培珍,高后秀.无铅焊料研究现状与发展展望[J].功能材料,2004,35(4):403-406. 被引量:17
  • 2Suganuma K. Huh S H, Kim K S. et al. [J]. Mater Trans JIM, 2001, (42) : 286.
  • 3Plumbridge W J, Gagg C R. [J]. J Mater Des Appl(PartL), 2000, (214) 153.
  • 4Koruda M, Setoyama D, Uno M, et al. [J]. J Alloys Compounds, 2004, (368): 211.
  • 5Flemings M C. Solidification Processing [ M]. New York: McGraw-Hill, 1974.
  • 6Flemings M C, Poirer D R, Barone R V,et al. [J].J Iron Steel Inst, 1970, (208) : 371.
  • 7Deng X, Chawla N, Chawla K K, et al. [J]. Acta Materialia, 2004, (52): 4291.
  • 8Kang S, Sarkhel A K. [J]. J Electron Mater, 1994,(23) : 701.
  • 9Frear D R, Vianco P T. [J]. Metall Mater Trans A.1994, (25): 1509.
  • 10Cannis J.[J].Adv Packag, 2001, (8) : 33-38.

共引文献9

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部