期刊文献+

基于压缩感知的麦克风阵列声源定位算法 被引量:13

Compressed sensing-based sound source localization algorithm for microphone array
下载PDF
导出
摘要 为了提高麦克风阵列在高混响、低信噪比环境中的定位性能,提出了一种基于压缩感知的声源定位算法.该算法将声源定位问题转化为稀疏信号的重构问题,将不同位置的房间冲激响应作为特征以构建字典.首先,将麦克风接收信号转换至频域,从具有较高能量的频点中求得一组扩展的频域声源信号矢量,该矢量中包含了声源的位置信息.然后,在频域中整合这些扩展的声源信号矢量,使声源的位置信息更突出,矢量中最大元素所对应的空间位置即为声源的位置估计.仿真实验结果表明,与相位变换加权的可控响应功率(SRP-PHAT)定位算法相比,所提算法的定位成功率更高,对混响的鲁棒性更强,更适合高混响低信噪比环境中的声源位置估计. To improve the sound source localization performance of microphone arrays under the conditions with high reverberation and low signal-to-noise ratio( SNR),a compressed sensing-based sound source localization algorithm is proposed. In the proposed algorithm,the problem of sound source localization is converted to the reconstruction problem of sparse signal,and the room impulse responses at different locations are treated as the features used to construct the dictionary. First,the received signals of the microphone array are transformed to the frequency domain,and a set of extended source signal vectors in the frequency domain,which contain the location information of the sound source,are calculated from the frequency components with higher power. Then,the extended source signal vectors are integrated in the frequency domain to enhance the location information of the sound source,and the spatial location corresponding to the maximum element of the integrated vector is the location estimation of the sound source. The simulation results show that compared with the steered response power-phase transform( SRP-PHAT) localization algorithm,the proposed algorithm has a higher localization rate,and is more robust against reverberation and more suitable for location estimation under the conditions with high reverberation and low SNR.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期203-207,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61201345 61302152)
关键词 麦克风阵列 声源定位 压缩感知 microphone array sound source localization compressed sensing
  • 相关文献

参考文献14

  • 1DiBiase J H. A high-accuracy, low-latency technique for talker localization in reverberant environments using microphone arrays [D]. Providence, Rhode Island,USA: Brown University, 2000.
  • 2ZHAO XiaoYan,TANG Jie,ZHOU Lin,WU ZhenYang.Accelerated steered response power method for sound source localization via clustering search[J].Science China(Physics,Mechanics & Astronomy),2013,56(7):1329-1338. 被引量:5
  • 3Wan Xinwang, Wu Zhenyang. Sound source localization based on discrimination of cross-correlation functions [J]. Applied Acoustics, 2013, 74(1): 28-37.
  • 4Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 5Berger C R, Wang Z, Huang J, et al. Application of compressive sensing to sparse channel estimation [J]. IEEE Communications Magazine, 2010, 48(11): 164-174.
  • 6Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging [J]. Proceedings of IEEE, 2010, 98(6): 1006-1020.
  • 7Gurbuz A C, Cevher V, McClellan J H. Bearing estimation via spatial sparsity using compressive sensing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1358-1369.
  • 8Yin Jihao, Chen Tianqi. Direction-of-arrival estimation using a sparse representation of array covariance vectors [J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493.
  • 9Li X, Ma X, Yan S, et al. Single snapshot DOA estimation by compressive sampling [J]. Applied Acoustics, 2013, 74(7): 926-930.
  • 10Malioutov D, ?etin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.

二级参考文献22

  • 1Wang C, Griebel S, Brandstein M, et al. Real-time automated video and audio capture with multiple camera and microphones. J VLSI Signal Proc Syst Signal Image Video Technol, 2001, 29:81-99.
  • 2Jiang W S, Cai Z B, Luo M F, et al. A simple microphone array tbr source direction and distance estimation. In: Proceedings of IEEE Conference on Industrial Electronics and Applications. Beijing: IEEE, 2011. 1002-1005.
  • 3Badali A, Valin J M, Michaud F, et al. Evaluating real-time audio lo- calization algorithms for artificial audition in robotics. In: Proceed- ings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis: IEEE, 2009. 2033-2038.
  • 4Oh Y R, Yoon J S, Park J H, et al. A name recognition based call- and-come service for home robots. IEEE Trans Consum Electron, 2008, 54(2): 247-253.
  • 5Ma X Y, Mu K. Study on 2-dimensional microphone circular array speech enhancement algorithm based on the DOA. In: Proceedings of 2011 International Conference on Electronic and Mechanical Engi- neering and Information Technology. Harbin: IEEE, 2011. 2505-2508.
  • 6Cui W W. Study on Methods of Microphone Array Based on Sound Source Localization and Speech Enhancement. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2008. 100-136.
  • 7Omologo M, Matassoni M, Svaizer P. Speech Recognition with Mi- crophone Arrays, Ser. Microphone An'ays-Signal Processing Tech- niques and Application. Berlin: Springer-Verlag, 2001.331-353.
  • 8Zwyssing E, Lincoln M, Renals S. A digital microphone array for distant speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas: IEEE, 2010, 5106-5109.
  • 9DiBiase J H, Silverman H F, Brandstein M S. Robust Localization in Reverberant Rooms, Ser. Microphone Arrays-Signal Processing Techniques and Application. Berlin: Springer-Verlag, 2001.157-180.
  • 10Hu H, Wang M, Fu M, et al. Sound source localization sensor of robot for TDOA method. In: Proceedings of International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou: IEEE, 2011.19-22.

共引文献4

同被引文献112

  • 1刘浩,尹忠科,王建英.正交匹配跟踪(OMP)算法的收敛性研究[J].微计算机信息,2008,24(3):209-210. 被引量:7
  • 2王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 3张武威.关于室内混响时间的计算问题[J].电声技术,2005,29(3):17-20. 被引量:12
  • 4谭颖,殷福亮,李细林.改进的SRP-PHAT声源定位方法[J].电子与信息学报,2006,28(7):1223-1227. 被引量:16
  • 5Chong K S,Gwee B H,Chang J S.A 16-Channel Low-Power Nonuniform Spaced Filter Bank Core for Digital Hearing Aids[J].Circuits&Systems II Express Briefs IEEE Transactions on,2006,53(9):853-857.
  • 6Schasse A,Martin R,Soergel W,et al.Efficient Implementation of Single-Channel Noise Reduction for Hearing Aids Using a Cascaded Filter-Bank[C]//Speech Communication;10.ITG Symposium;Proceedings of.2012:1-4.
  • 7Schasse A,Gerkmann T,Martin R,et al.Two-Stage Filter-Bank System for Improved Single-Channel Noise Reduction in Hearing Aids[J].IEEE/ACM Transactions on Audio Speech&Language Processing,2015,23(2):383-393.
  • 8Cornelis B,Moonen M,Wouters J.Performance Analysis of Multi-channel Wiener Filter-Based Noise Reduction in Hearing Aids Under Second Order Statistics Estimation Errors[J].IEEE Transactions on Audio Speech&Language Processing,2011,19(5):1368-1381.
  • 9Marquardt D,Hohmann V,Doclo S.Coherence preservation in multi-channel Wiener filtering based noise reduction forbinaural hearing aids[J].IEEE/ACM Transactions on Audio Speech&Language Processing,2013,23(12):8648-8652.
  • 10Marquardt D,Hohmann V,Doclo S.Interaural Coherence Preservation in Multi-Channel Wiener Filtering-Based Noise Reduction for Binaural Hearing Aids[J].IEEE Transactions on Audio Speech&Language Processing,2015,23(12):2162-2176.

引证文献13

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部