期刊文献+

基于优化无迹Kalman滤波的电网动态谐波估计 被引量:4

Dynamic harmonic estimation based on optimized unscented Kalman filter model
下载PDF
导出
摘要 提出一种基于粒子群优化的无迹卡尔曼滤波(particle swarm optimized unscented Kalman filter,PSOUKF)的电网动态谐波估计方法,利用包含种群分类与动态学习因子的改进粒子群优化算法,优化无迹卡尔曼滤波算法(unscented Kalman filter,UKF)的状态噪声协方差和观测噪声协方差,使系统噪声对电网动态谐波估计结果的影响得到充分考虑,克服了传统UKF算法将这两种方差视为常数导致的动态谐波估计精度低的缺陷.仿真结果表明,PSOKUF算法比卡尔曼滤波(Kalman filter,KF)算法和传统的UKF算法更有效,在没有增加计算复杂度的情况下,能够提高动态谐波估计精度. We propose a particle swarm optimized unscented Kalman filter ( PSOUKF) method to estimate the power system dynamic harmonics. By using the improved particle swarm optimization algorithm with species classification and dynamic learning factor, we optimize the state noise covariance and the measurement noise covariance of the unscented Kalman filter ( UKF) so as to sufficiently take the impacts of power system noise on dynamic harmonic estimation into account. The proposed method overcomes the deficiency of low dynamic harmonic estimation accuracy in the traditional UKF method in which the above two kinds of covariance are taken as constants. Simulation results show that the proposed PSOUKF is more effective than Kalman filter ( KF) and UKF, and PSOUKF can improve the dynamic harmonic estimation accuracy without increasing the computational complexity.
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2015年第2期188-195,共8页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(51177102) 深圳市基础研究计划项目(JCYJ20140418193546100 JCYJ20120817164050203)~~
关键词 电力系统 电能质量 动态谐波估计 无迹卡尔曼滤波 粒子群算法 状态噪声协方差 观测噪声协方差 power system power quality dynamic harmonic estimation unscented Kalman filter particle swarm optimization state noise covariance measurement noise covariance
  • 相关文献

参考文献21

二级参考文献87

共引文献214

同被引文献65

  • 1徐志向,侯世英,周林,吕厚余.基于奇异值分解的电力系统谐波状态估计[J].电力自动化设备,2006,26(11):28-31. 被引量:26
  • 2Ding Ning,Cai Wei,Suo Juan,et al.Voltage sag disturbance detection based on RMS voltage method[C]// Power and Energy Engineering Conference.Wuhan:IEEE,2009:1-4.
  • 3Singh S K,Goswami A K,Sinha N.Power system harmonic parameter estimation using bilinear recursive least square (BRLS) algorithm[J].International Journal of Electrical Power and Energy Systems,2015,67:1-10.
  • 4Routray A,Pradhan A K,Rao K P.A novel Kalman filter for frequency estimation of distorted signals in power systems[J].IEEE Transactions on Instrumentation and Measurement,2002,51(3):469-479.
  • 5Reza M S,Ciobotaru M,Agelidis V G,et al.Instantaneous power quality analysis using frequency adaptive Kalman filter technique[C]// The 7th International Power Electronics and Motion Control Conference.Harbin,China:IEEE,2012:81-87.
  • 6Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 7López R A,Yuz J I,Creixell W U,et al.Recursive parameter and state estimation for a mining industry process[C]// The 20th Mediterranean Conference on Control & Automation (MED).Barcelona,Spain:IEEE,2012:30-35.
  • 8Ray P K,Subudhi B.Ensemble Kalman filter based power system harmonic estimation[J].IEEE Transactions on instrumentation and measurement,2012,61(12):3216-3124.
  • 9Tian Lei,Rong Jian,Zhong Xiaochun,et al.UPF algorithm and its application in the GPS/INS integrated navigation[C]// International Conference on Wireless Communications and Signal Processing.Nanjing,China:IEEE,2009:1-4.
  • 10汲清波,冯驰,吕晓凤.UKF、PF与UPF跟踪性能的比较[J].计算机工程与应用,2008,44(32):60-63. 被引量:11

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部