期刊文献+

基于极限学习机神经网络的买断制加盟模式订货决策

Study on Ordering Decision under“Buyout”Franchise Mode Based on Extreme Learning Machine Neural Network
下载PDF
导出
摘要 随着服装市场和服装品牌的不断成熟以及人们对服装需求的日益多样化,买断制加盟模式成为具有一定市场知名度的品牌服装的选择,这给加盟商订货决策带来了一定的风险。为了更好地完成订货采购任务,加盟商需根据自己店铺的历史销售数据进行预测,以确定订货会的订货量并制定采购预算。以预测某品牌加盟商夏季每月每个品类的销售量为出发点构建模型,采用极限学习机神经网络的方法进行销售预测,并将预测结果以图表的形式进行展示,为服装加盟商订货决策及采购预算的确定提供理论支持。 As clothing market and fashion brands continue to be mature and demands for clothing are increasingly diversified,"buyout"franchise mode has become a selection for clothing brands that possess certain popularity and market share.This brings about certain risks for franchisees'ordering decisions.To better accomplish the purchasing task,franchisees need to make predictions based on historical sales data of their own stores so as to determine ordering quantity in the order fair and make procurement budget.This paper starts from predicting monthly sales volume of each category of a brand in summer to construct a model and adopts extreme learning machine neural network for sales prediction.The prediction results are displayed in graph form to provide theoretical support for ordering decision and of clothing franchisees and confirmation of procurement budget.
出处 《浙江理工大学学报(社会科学版)》 2015年第2期109-113,共5页 Journal of Zhejiang Sci-Tech University:Social Sciences
基金 国家自然科学基金项目(11201428 11271324 11471286) 浙江省自然科学基金项目(Y6110091) 浙江省高校重中之重学科开放基金项目(2013KF19)
关键词 订货决策 服装销售预测 极限学习机 ordering decision clothing sales forecasting extreme learning machine
  • 相关文献

参考文献8

  • 1张喆.开店守则:降低库存提高进销比[J].服装销售与市场,2005(9):7.
  • 2王海宁,王厉冰.品牌服饰连锁经营模式研究[J].江苏纺织,2005(6):46-48. 被引量:2
  • 3Maria E N, Luca G, Luca P. Demand forecasting in the fashion industry: a review[J]. International Journal of Engineering Business Management, 2013(5) : 1-6.
  • 4Huang O B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[J]. Neural Networks, 2004(2): 985-990.
  • 5Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006(70) : 489-501.
  • 6Xia M, Zhmng Y C, Weng L G, et al. Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs[J]. Knowledge-based Systems, 2012 (36) : 253-259.
  • 7牛建涛,许建梅.生丝电子检验中线密度变异系数的分布[J].纺织学报,2013,34(10):20-25. 被引量:3
  • 8Hansen L K, Salamon P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10).. 993-1001.

二级参考文献14

  • 1秦波,龙河.生丝纤度控制范围的探讨[J].四川丝绸,1994(4):20-22. 被引量:2
  • 2许建梅,周颖,孙启龙,狄传霞,顾虎,白伦.生丝纤度电子检验中的样本容量研究[J].丝绸,2006,43(9):21-23. 被引量:6
  • 3许建梅,白伦.生丝纤度CVb%电子检测分级标准研究[J].丝绸,2007,44(2):41-43. 被引量:2
  • 4苏州丝绸工学院,浙江丝绸工学院.制丝学[M].北京:中国纺织出版社,1994.
  • 5中国丝绸协会.《生丝电子检测试验方法》国际标准工作组会议在杭州召开[EB/OL]. (2010 -08 -03)[2012 - 07 - 15]. http://www. esilk. net/web/view,aspx? AID = 110400.
  • 6HU Qi, WANG Qiong, XU Jianmei, et al. Research onthe distributions of thick and thin defects in theelectronic testing for raw silk [ J ] . Advanced MaterialsResearch, 2011 (11) :87 -90.
  • 7NIU Jiantao, HU Qi, XU Jianmei, et al. Research onthe grading theory of thick and thin defects in theelectronic testing for raw silk [ J ]. Advanced MaterialsResearch, 2011 (1) :439 - 444.
  • 8许建梅.生丝电子检验中纤度变异系数分级理论研究[D].苏州:苏州大学,2010.
  • 9许建梅,白伦.生丝电子检测中连续样本的变异系数分布[OL]. (2008 -02 -27).中国科技论文在线.http :// www. paper, edu. cn/index. php/default/releasepaper/content/200802-351.
  • 10周国丽,陈庆官,范蓉蓉.实际生丝纤度正态分布的探讨[J].丝绸,2009,46(1):29-30. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部