摘要
基于逻辑函数1阶布尔c-导数,引入了k阶布尔c-导数的概念.提出了基于逻辑函数的K-图和降维K-图的1阶布尔c-导数和2阶布尔c-导数的图形计算方法,并通过实例展示了其求解过程.与代数法相比,该方法更直观有效,且能直接读出布尔c-导数的最简与/或式.所提出的用降维K-图计算逻辑函数布尔c-导数的方法在一定程度上解决了K-图规模随函数变量n的增加而迅速扩大的问题.
Based on the first-order c-derivative of Boolean functions,the definition of Boolean k-order c-derivative is introduced.Then,a novel graphic method calculating the first and second-order c-derivative of Boolean functions is proposed by using K-map and reduced-dimension K-map.A few examples are given to show the calculating process of Boolean c-derivative by graphic method.Compared with the algebraic method,the proposed graphic method has some features of intuition and simplicity.The simplest AND/OR expression of Boolean c-derivative can also be obtained from K-map or reduced-dimension K-map.The method calculating the c-derivative Boolean functions with reduced-dimension K-map can solve the problems of K-map scale which rapidly expands with the increasing of function variable nin a certain extent.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2015年第2期162-165,共4页
Journal of Zhejiang University(Science Edition)
基金
浙江省自然科学基金资助项目(Y1110808)
浙江省科技厅工业面上项目(2009C31023)
关键词
布尔c-导数
K-图
降维K-图
故障检测
密码学
Boolean c-derivative
K-map
reduced-dimension K-map
fault detection
cryptography