期刊文献+

一类非共轭边值问题Green函数定号的最优区间

The optimal interval for Green's function having a constant sign of a non-conjugate boundary value problem
下载PDF
导出
摘要 证明了一类非共轭微分方程在非共轭边值条件下Green函数定号的最优区间的存在性,使得当参数在此最优区间时,Green函数是定负的.随后用逆向搜索法找到参数最优区间的左、右端点. The existence of the optimal interval is proved,such that the Green's function of a disconjugate differential equation with non-conjugate boundary condition will get negative sign when the parameter is in this interval.Then,the left and right endpoints of this interval are found by backward searching method.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第2期4-8,共5页 Journal of Northwest Normal University(Natural Science)
基金 教育部高等学校博士点基金项目(20134219120003) 湖北省自然科学基金重点项目(2013CFA131) 冶金工业过程的系统科学湖北省重点实验室基金项目(z201302)
关键词 GREEN函数 定号 最优区间 三阶微分方程 Green's function constant sign optimal interval third-order differential equation
  • 相关文献

参考文献10

  • 1GREGUS M.Third Order Linear Differential Equations[M].Mathematics and Its Applications.Dordrecht:Reidel,1987.
  • 2KLAASEN G.Differential inequalities and existence theorems for second and third order boundary value problems[J].J Differential Equations,1971,10;529-537.
  • 3JACKSON L K.Existence and uniqueness of solutions of boundary value problems for third order differential equations[J].J Differential Equations,1973,13:432-437.
  • 4FENG Yu-qiang,LIU San-yang.Multiplicity of solutions for a nonlinear third-order boundary value problem[J].J Engineer Math,2003,20:109-112.
  • 5MA Ru-yun.Disconjugacy and extremal solutions of nonlinear third-order equations[J].Curnmun Pur Appl Anal,2014,13:1223-1236.
  • 6TORRES P J.Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J].J Differential Equations ?2003,190:643-662.
  • 7WARD J R Jr.Periodic solutions of ordinary differential equations with bounded nonlinearities[J].Topol Method Nonl Anal?2002,19:275-282.
  • 8MAWHIN J.Topological degree and boundary value problems for nonlinear differential equations[M]// FURI M,ZECCA P.Topological Methods for Ordinary Differential Equations.Lecture Notes in Mathematics Vol 1537.New York:Springer,1993:74-142.
  • 9CABADA A.The method of lower and upper solutions for second,third,fourth and higher order boundary value problems[J].J Math Anal Appl,1994,185:302-320.
  • 10COPPEL W A.Disconjugacy[M].Lecture Notes in Mathematics Vol 220.Berlin:Springer,1971.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部