期刊文献+

均值尾部相关系数及其在金融领域的应用 被引量:4

Mean Tail Dependence Coefficient and Its Application in Financial Fields
下载PDF
导出
摘要 传统尾部相关系数常被用于刻画变量之间的极值相关性,但这种相关系数存在对相关性信息刻画不完全的问题。为能够捕获更多的非极值相关性信息,本文提出均值尾部相关系数的概念,研究了均值尾部系数同Copula理论之间的关系,并以t Copula为例分析了4种均值尾部相关系数的变化特征。通过将均值尾部相关系数和传统尾部相关系数分别应用于沪深股市的相关性研究,从实证角度验证了这种相关系数的实用价值。 The traditional tail dependence coefficients can be used for describing the extreme correlation between different variables, however, this kind of coefficients lost information in capturing the non-extreme correlation information. In order to capture more correlation information, this paper proposes the concept of Mean Tail Dependence Coefficient. In this paper, we analyze the relationship between Copula theory and Mean tail dependence coefficient, and then we use the t Copula Function to analyze the characteristics of four Mean tall dependence coefficients. Finally, in order to test their practical value, we apply Mean tail dependence coefficients in the Chinese stock markets and analyze the correlation between the stock index of Shanghai and Shenzhen.
作者 黄在鑫 咸劲
出处 《统计研究》 CSSCI 北大核心 2015年第2期76-82,共7页 Statistical Research
基金 上海财经大学博士研究生创新基金"全球主要金融市场动态相关结构及风险传导路径研究"(CXJJ-2012-425) 国家留学基金管理委员会(国家建设高水平大学公派博士研究生项目)资助
关键词 均值尾部相关系数 尾部相关系数 Mean Tail Dependence Coefficient Tail Dependence Coefficient Copula
  • 相关文献

参考文献1

二级参考文献12

  • 1Draisma G, Drees H, Ferreira A, et al.. Bivariate tail estimation: Dependence in asymptotic independence[J]. Bernoulli, 2004(10): 251 -280.
  • 2Malevergne Y, Sornette D. Tail dependence of factor models[J]. Journal of Risk, 2004, 6(3): 71-116.
  • 3Hou C, Xu X. An empirical research on tail dependence in China stock market[C]//International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2007:4622 -4625.
  • 4Nelson R B. An Introduction to Copulas[M]. New York: Springer Science and Business Media, 2006: 92-94.
  • 5Li D. On default correlation: A Copula function approach[J]. Journal of Fixed Income, 2000(9): 43 -54.
  • 6Schmidt R. Tail dependence for elliptically contoured distributions[J]. Mathematical Methods of Operations Research, 2002, 55: 301-327.
  • 7Hofert M. Sampling Archimedean copulas[J]. Computational Statistics and Data Analysis, 2008, 52: 5163-5174.
  • 8Durante A, Kolesarova A, Mesiar R, et al. Semilinear copulas[J]. Fuzzy Sets and Systems, 2008, 159: 63-76.
  • 9Juri A, Wuthrich M V. Copula convergence theorems for tail events[J]. Insurance: Mathematics and Economics, 2002, 24: 139-148.
  • 10Cherubini U, Luciano E, Vecchiato W. Copula Methods in Finance[M]. UK: John Wiley & Sons, 2004(8): 179- 188.

共引文献12

同被引文献24

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部