期刊文献+

The RCH Method for Computing Minimal Polynomials of Polynomial Matrices 被引量:1

The RCH Method for Computing Minimal Polynomials of Polynomial Matrices
原文传递
导出
摘要 In this paper,a randomized Cayley-Hamilton theorem based method(abbreviated by RCH method) for computing the minimal polynomial of a polynomial matrix is presented.It determines the coefficient polynomials term by term from lower to higher degree.By using a random vector and randomly shifting,it requires no condition on the input matrix and works with probability one.In the case that coefficients of entries of the given polynomial matrix are all integers and that the algorithm is performed in exact computation,by using the modular technique,a parallelized version of the RCH method is also given.Comparisons with other algorithms in both theoretical complexity analysis and computational tests are given to show its effectiveness.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第1期190-209,共20页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11171051 the Major Research plan of the National Natural Science Foundation of China under Grant No.91230103 the Fundamental Research Funds for the Central Universities under Grant No.DUT14RC(3)023
关键词 Characteristic polynomial minimal polynomial polynomial matrix. 多项式矩阵 极小多项式 RCH 计算 最小多项式 模块化技术 复杂性分析 随机
  • 相关文献

参考文献19

  • 1DOff R C, Modern Control Systems, Addison Wesley Publishing Co., Inc., 1991.
  • 2Faddeev D K and Faddeeva V N, Computational Methods of Linear Algebra, Freeman, San Francisco, 1963.
  • 3Cohen H, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.
  • 4Helmberg G, Wagner P, and Veltkamp G, On Faddeev-Leverrier's method for the computation of the characteristic polynomial of a matrix and of eigenvectors, Linear Alg.Appl., 1993, 185: 219-223.
  • 5Pan V, Computing the determinant and the the characteristic polynomial of a matrix via solving linear systems of equations, Inform.Process.Lett., 1988, 28: 71-75.
  • 6Rombouts S and Heyde K, An accurate and efficient algorithm for the characteristic polynomial of a general square matrix, J.Comput.Phys., 1998, 140: 453-458.
  • 7Wang J and Chen C, On the computation of the characteristic polynomial of a matrix, IEEE Trans.Autom.Control, 1982, 27: 449-451.
  • 8Zheng D Z, A new method on computation of the characteristic polynomial for a class of square matrices, IEEE Trans.Autom.Control, 1983, 28: 516-518.
  • 9Kuriyama K and Moritsugu S, Fraction-free method for computing rational normal forms of square matrices, Trans.Japan Soc.Indust.Appl.Math., 1996, 4: 253-264.
  • 10Kitamoto T, Eifficient computation of the characteristic polynomial of a polynomial matrix, IEICE Trans.Fundamentals, 1999, E83-A: 842-848.

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部