弱Orlicz-Lorentz空间上拟线性算子的有界性
摘要
本文讨论了Orlicz函数的基本性质,并应用这些基本性质证明了弱Orlicz-Lorentz空间的一个插值定理.
基金
新疆大学大学生创新项目(XJU-SRT-14048)
二级参考文献29
-
1Andersen K F. Weighted generalized Hardy inequalities for nonincreasing functions. Canad J Math, 1991, 43: 1121-1135.
-
2Ando Tsuyoshi. On some properties of convex functions. Bull Acad Polon Sci S-r Sci Math Astronom Phys, 1960, 8: 413-418.
-
3Arifio M A, Muckenhoupt B. Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions. Trans Amer Math Soc, 1990, 320:727-735.
-
4Bloom S, Kerman R. Weighted Lp modular inequalities for operators of Hardy type. Studia Math, 1994, 110:35-52.
-
5Bloom S, Kerman R. Weighted Orlicz space modular inequalities for the Hardy-Littlewood maximal operator. Studia Math, 1994, 110:149-167.
-
6Bennett C, Sharpley R. Interpolation of Operators. In: Pure and Applied Mathematics, vol. 129. Boston, MA: Academic Press, 1988.
-
7Carro M, Garcfa del Amo A, Soria J. Weak type weights and normable Lorentz spaces. Proc Amer Math Soc, 1996, 124:849 857.
-
8Carro M J, Raposo J A, Soria J. Recent Developements in the Theory of Lorentz Spaces and Weighted Inequalities. Mere Amer Math Soc, 187. Providence, RI: Amer Math Soc, 2007.
-
9Carro M J, Soria J. Weighted Lorentz spaces and the Hardy operator. J Funct Anal, 1993, 112:480 494.
-
10Carro M J, Soria J. Boundedness of some integral operators. Canad J Math, 1993, 45:1155-1166.
-
1马丽,刘颖芬,周伟.一类特殊算子的有界性[J].赣南师范学院学报,2010,31(3):1-2.
-
2徐秀娟,刘增.关于“拟线性算子的几个性质”的注记[J].山东大学学报(理学版),2009,44(3):65-66.
-
3曹辉.拟线性算子的局部连续性[J].科技信息,2008(33):228-228.
-
4盖功琪.关于拟线性算子的几个性质[J].黑龙江大学自然科学学报,2007,24(2):261-262. 被引量:1
-
5曾六川.Upper Bounds for the L_p-norms of the Maximal Functions of Martingales[J].Chinese Quarterly Journal of Mathematics,2002,17(1):77-84.
-
6程玲玲,刘文斌,叶晴晴.一类带p-Laplacian算子的分数阶耦合系统在共振条件下的边值问题[J].华东师范大学学报(自然科学版),2014(3):30-39. 被引量:1
-
7游兆永,王川龙.广义单调算子的满秩性[J].工程数学学报,1996,13(4):91-94.
-
8张恩明.Banach空间中拟线性算子的广义Banach引理[J].哈尔滨师范大学自然科学学报,2004,20(2):32-33. 被引量:1
-
9Yi Yu LIANG,Li Guang LIU,Da Chun YANG.An Off-Diagonal Marcinkiewicz Interpolation Theorem on Lorentz Spaces[J].Acta Mathematica Sinica,English Series,2011,27(8):1477-1488. 被引量:2
-
10Zi WANG,Bo Ying WU,Yu Wen Wang.Perturbation Analysis of Moore–Penrose Quasi-linear Projection Generalized Inverse of Closed Linear Operators in Banach Spaces[J].Acta Mathematica Sinica,English Series,2016,32(6):699-714. 被引量:2