期刊文献+

基于量子关联成像的图像重构算法采样数 被引量:6

Sampling number of image reconstruction arithmetic based on quantum correlated imaging
下载PDF
导出
摘要 量子关联成像技术采用单点强度探测,存贮信息量大,成像速度慢,需研究快速图像重构成像算法。对量子关联成像技术图像重构算法中的统计迭代法和压缩感知算法的采样次数进行了仿真分析,压缩感知算法采用二维离散余弦变换(DCT)将图像稀疏化,高斯随机矩阵作为测量矩阵,正交匹配追踪(OMP)算法对图像进行重构。结果表明:图像越大,重构图像需要的采样次数和采样时间越长,采用压缩感知算法能有效减少采样次数,从而提高系统成像速度。因此,研究量子关联成像的图像重构算法,减少图像的采样次数,对提高成像速度具有重要意义。 Quantum correlated imaging technology adopts single-point intensity detecting,huge information storage,slow imaging speed,so faster image reconstruction algorithm was required.The simulation of samples with image reconstructing algorithm was based on statistical arithmetic and compressed sensing respectively.The inputs of the compressed sensing algorithm are sparse images which are calculated with discrete cosine transform(DCT) and Gauss random matrices,reconstructing image with orthogonal matching pursuit(OMP).The result shows that the correlated imaging algorithm based on compressed sensing can lessen the number of measurements and save data space and speed.Therefore,the study of quantum correlated imaging image reconstruction algorithm has great significance for lessening the number of samples and improving imaging speed.
出处 《量子电子学报》 CAS CSCD 北大核心 2015年第2期144-149,共6页 Chinese Journal of Quantum Electronics
基金 国家重大科学仪器设备开发专向(2012YQ150092) 上海市科技人才计划项目资助(14QB1401800)
关键词 图像处理 采样数 关联成像 压缩感知 正交匹配追踪 image processing sampling time corrected imaging compressed sensing orthogonal matching pursuit
  • 相关文献

参考文献1

二级参考文献17

  • 1Donoho D. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.
  • 2Candès E,Romberg J,Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.
  • 3Romberg J. Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):14-20.doi:10.1109/MSP.2007.914729.
  • 4Gemmeke J F,Cranen B. Using sparse representations for missing data imputation in noise robust speech recognition[A].Lausanne,Switzerland,2008.987-991.
  • 5Duarte M F,Davenport M A,Takhar D. Single-Pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):83-91.doi:10.1109/MSP.2007.914730.
  • 6Baraniuk R,Steeghs P. Compressive radar imaging[A].Washington D.C,USA:IEEE,2007.128-133.doi:10.1002/mrc.1619.
  • 7Bhattacharya S,Blumensath T,Mulagrew B. Fast encoding of synthetic aperture radar raw data using compressed sensing[A].Washington D.C,USA:IEEE,2007.448-452.
  • 8Lustig M,Donoho D L,Pauly J M. Sparse MRI:The application of compressedsensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,(06):1182-1195.doi:10.1002/mrm.21391.
  • 9Hu S,Lustig M,Chen A P. Compressed sensing for resolution enhancement of hyperpolarized 13 C fly hack 3 D-MRSI[J].Journal of Magnetic Resonance,2008,(02):258-264.
  • 10Donoho D L,Tsaig Y,Drori I. Sparse solution of underdeterminedlinear equations by stagewise orthngonal matching pursuit[R].2006.

共引文献11

同被引文献48

  • 1Pittman T B, Shih Y H, Strekalov D V, et al. Optical ima- ging by means of two-photon quantum entanglement[J].Physical Review A, 1995,52(5) :3429-3432.
  • 2Jeffrey H. Shapiro,Robert W. Boyd, The physics of ghost maging[J]. Quantum Inf Process, 2012,11 ( 1 ) : 949-993.
  • 3Bennink Ryan S, Bentley Sean J,Boyd Robert W.. Two- Photon. Coincidence Imaging with a Classical Source[J]. Physical Review Letters, 2002,89 (11 ) : 113601.
  • 4Valencia Alejandra, Scarcelli Giuliano, D. Angelo Milena, Shih Yanhua. Two-Photon Imaging with Thermal Light[J]. Physical Review Letters,2005,94(6) :063601.
  • 5Luigi A Lugiato. "Ghost Imaging" :Fundamental and appli- cative aspects[J], lstituto Lombardo-Accademia di Sci- enze e Lettere-Rendiconti di Scienze, 2015, 147 (3) : 1- 10.
  • 6CHENG Jing. Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere[J]. Physi- cal Review A,2013,87(4) :043810.
  • 7WANG Wei, WANG Yan-pu, LI Jia-hua, et al. Iterative ghost imaging [J]. Optics letters, 2014,39 ( 17 ): 5150- 5153.
  • 8Jeffrey H. Shapiro. Computational ghost imaging [J]. Physical Review A,2008,78(6) :061802.
  • 9Vladimir Katkovnik, J. T. Astola, Karen Egiazarian. Dis- crete diffraction transform for propagation, reconstruc- tion,and design of wavefield distributions[J]. Applied Optics,2008,47(19) :3481-3493.
  • 10白旭,李永强,赵生妹.基于压缩感知的差分关联成像方案研究[J].物理学报,2013,62(4):198-205. 被引量:32

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部