期刊文献+

总发射功率约束条件下分布式相干检测融合

Total Power Constrained Distributed Coherent Detection Fusion
下载PDF
导出
摘要 针对传感器融合系统总发射功率约束条件下的相干检测融合问题,利用偏移系数极大化理论优化系统检测性能.建立了基于多址接入信道传输的多传感器分布式相干检测融合模型,根据融合中心对信道增益信息的获取程度,提出了信道增益信息完美已知时的总发射功率约束相干检测融合方法(TPC-DCM方法)和信道增益统计信息已知时的总发射功率约束相干检测融合方法(TPC-DCM-CS方法),上述两种方法分别将总发射功率约束分布式检测融合问题转化为一个秩为1的最大特征值问题,获得了最优加权乘性系数的闭合解.蒙特卡洛仿真试验表明:在低虚警概率条件下,当信噪比大于等于0dB时,文中提出的方法的性能优于传统的基于并行网络拓扑结构的最优似然比方法. This paper is mainly about the total power constrained distributed coherent detection. The deflection coefficient maximization (DCM) is used to optimize the performance of the fusion system under the total power constraint. The model of the distributed coherent detection fusion system based on the multiple access channel (MAC) was established. According to the information access degree of the fusion center,in each scenario,two cases were studied,including the other with the perfect channel gain information and the other with the statistical channel gain information. Two methods named TPC-DCM and TPC-DCM-CS proposed. The problem of distributed detection fusion under total power constraints of the system was transformed into the largest eigenvalue problem with a rank one by the two methods with the closed-form solutions of the optimal weighting coefficients obtained. Monte-Carlo simulations indicate that, when the SNR is greater than or equal to 0 dE and the false alarm probability is low, the proposed method is superior in the detection performence to the existing LRT method which is the optimal based on the parallel access channel (PAC) scheme.
出处 《西安工业大学学报》 CAS 2015年第1期23-28,共6页 Journal of Xi’an Technological University
基金 国家自然科学基金资助项目(60972152)
关键词 检测融合 总功率约束 偏移系数极大化 最大特征值问题 detection fusion total power constraint deflection coefficient maximization largest eigenvalue problem.
  • 相关文献

参考文献14

  • 1李燕君,王智,孙优贤.资源受限的无线传感器网络基于衰减信道的决策融合[J].软件学报,2007,18(5):1130-1137. 被引量:19
  • 2刘向阳,彭应宁.基于删除的混合融合准则[J].电子与信息学报,2008,30(1):159-162. 被引量:4
  • 3LIU K, SAYEED A M. Type-Based Decentralized Detection in Wireless Sensor Networks [ J]. IEEE Transaction on Signal Processing,2007,55(5) : 1899.
  • 4LIN Y, CHEN B, TONG L. Distributed Detection over Multiple Access Channels[C]2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu( Hawaii, USA) : IEEE, 2007 : 541.
  • 5LI F, AMIE S. Evans. Decision Fusion over Noncoherent Fading Multi-Access Channels[J]. IEEE Transaction on Signal Processing,2011,59(9) .. 4367.
  • 6XU Z, HUANG J, ZHANG Q F. New Method for De- tection Fusion of Multiple-Access Channel Based on De- flection Coefficient Maximization and NP Rule[J]. Jour- nal of Systems Engineering and Electronics, 2012,23 (4) .. 612.
  • 7BEDRGER C R,WILLETT P,ZHOU S L,et al. De- flection Optimal Data Forwarding over a Gaussian Multi-Access Channel. [J] IEEE Communications Letters, 2007,11 (1) : 1.
  • 8LI F,JAMIE S. EVANS. Optimal Strategies for Dis- tributed Detection over Multi-Access Channels[C]// 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas (Nevada, USA) ..IEEE,2008-. 2417.
  • 9LI W,DAI H. Distributed Detection in Wireless Sen- sor Networks Using a Multiple Access Channel[J]. IEEE Transaction on Signal Processing, 2007, 55 (3) : 822.
  • 10LAI K C, YANG Y L,JIA J J. Fusion of Decisions Transmitted over Flat Fading Channels via Maximi- zing the Deflection Coefficient[J]. IEEE Transaction on Vehicular Technology,2010,59(7) : 3634.

二级参考文献12

  • 1Zhu YM.Multisensor Distributed Statistic Decision.Beijing:Science Press,2000.19-21 (in Chinese).
  • 2Han CZ.Multi-Source Information fusion.Beijing:Tsinghua University Press,2006.195-200 (in Chinese).
  • 3Chamberland J,Veeravaili V.Decentralized detection in sensor networks.IEEE Trans.on Signal Processing,2003,51(2):407-416.
  • 4Yuan YQ,Moshe K.Distributed decision fusion with a random-access channel for sensor network application.IEEE Trans.on Instrumentation and Measurement,2004,53(4):1339-1344.
  • 5Aldosari S,Moura J.Fusion in sensor network with communication constraints.In:Proc.of the IEEE/ACM Symp.on Information Processing in Sensor Networks (IPSN 2004).New York:ACM Press,2004.108-115.http://ieeexplore.ieee.org/xpls/abs_all.jsp? isnumber=29021&arnumber=1307329&count=52&index=13
  • 6Chair Z,Varshney PK.Optimal data fusion in multiple sensor detection system.IEEE Trans.on Aerospace Electron System,1986,22(1):98-101.
  • 7Israfil B,Ghassan A,Yucel A.Parallel distributed detection for wireless sensor networks:Performance analysis and design.In:Proc.of the IEEE Global Telecommunications Conf.(GLOBECOM 2005).Piscataway:IEEE,2005.2420-2424.http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=33288&arnumber=1578097&count=118&index=113
  • 8Picinbono B.On deflection as a performance criterion in detection.IEEE Trans.on Aerospace Electron System,1995,31(3):1072-1081.
  • 9Varshney P K. Distributed Detection and Data Fusion. New York: Springer-Verlag New York, Inc, 1996:1-36.
  • 10Chen B, Jiang R, and Kasetkasem T, et al.. Channel aware decision fusion in wireless sensor networks. IEEE Trans. on Signal Processing, 2004, 52(12): 3454-3458.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部