期刊文献+

局部分块的一类支持向量数据描述 被引量:2

One-class support vector data description based on local patch
下载PDF
导出
摘要 针对支持向量数据描述(SVDD)不能鉴别数据局部几何结构信息问题,提出了一种新颖的异常数据检测方法,称为局部分块的一类支持向量数据描述(OCSVDDLP)。首先对数据进行局部分块,然后利用局部分块进行样本重构,最后采用SVDD对重构样本进行学习进而获得决策模型。人造数据集实验结果表明OCSVDDLP能够捕捉数据的全局几何结构,也具备揭示数据局部几何结构信息的能力;真实数据集实验结果表明OCSVDDLP在异常检测中具有较好的性能优势。 Because Support Vector Data Description( SVDD) fails in identifying the local geometric information, a new detection method, called One-class SVDD based on Local Patch( OCSVDDLP), was proposed. First, the data was divided into many local patches. Then, each sample was reconstructed by using the corresponding local patch. Finally, the decision model was obtained through training on the reconstruction data with SVDD. The experimental results on the artificial data set demonstrate that OCSVDDLPcan not only capture the global geometric structure of the data set, but also uncover the local geometric information. Besides, the results on real-world data sets validate the effectiveness of the proposed method.
出处 《计算机应用》 CSCD 北大核心 2015年第4期1026-1029,1034,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61370173 61103051 61174029) 浙江省自然科学基金资助项目(LY13F020011) 浙江省公益性技术应用研究计划项目(2014C31084 2013C31097) 湖州市公益性应用技术研究重点资助项目(2013GZ02)
关键词 异常检测 支持向量 支持向量数据描述 局部分块 样本重构 abnormal detection support vector Support Vector Data Description(SVDD) local patch sample reconstruction
  • 相关文献

参考文献22

  • 1骆振兴,楼才义,陈仕川,李少伟.基于最大分类间隔SVDD算法的辐射源个体确认[J].电子与信息学报,2011,33(9):2268-2272. 被引量:4
  • 2DAVID M J T, ROBERT P W D. Support vector data description [J]. Machine Learning, 2004, 54(1): 45-66.
  • 3WU M, YE J. A small sphere and large margin approach for novelty detection using training data with outliers[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31( 11): 2088 - 2092.
  • 4XIAO Y, LIU B, CAO L, WU X, et al. Multi-sphere support vec- tor data description for oufliers detection on multi-distribution data [ C]/! Proceedings of the 2009 IEEE International Conference on Data Mining Workshops. Piscataway: IEEE Press, 2009:82 -87.
  • 5LE TTRAN D, NGUYEN P, et al. Multiple distribution data de- scription learning method for novelty detection[ C]// Proceedings of the 2011 International Joint Conference on Neural Networks. Piscat- away: IEEE Press, 2011:2321 -2326.
  • 6CHEN Y, QIAN J, SALIGRAMA V. A new one-class SVM for a- nomaly detection[ C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscat- away: IEEE Press, 2013:3567-3571.
  • 7SCHOLKOPF B, SMOLA A J. Learning with kernels[ M]. Cam- bridge: M1T Press, 2002:227 - 250.
  • 8TSANG I W, KWOK J T, CHEUNG P M. Core vector machines: fast SVM training on very large data sets[ J]. Journal of Machine Learning Research, 2005(6): 363-392.
  • 9HOFFMANN H. Kernel PCA for novelty detection[ J]. Pattern Rec- ognition, 2007, 40(3): 863-874.
  • 10XIAO Y, WANG H, XU W, et al. L1 norm based KPCA for nov- elty detection[ J]. Pattern Recognition, 2013, 46(1) : 389 - 396.

二级参考文献91

  • 1邓乃阳,田英杰.数据挖掘中的新方法-支持向量机.科学出版社,北京,2004.
  • 2Wu M R, Ye J P. A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Transactions on Pattern Analysis and Mazhine Intelligence, 2009, 31(11): 2088-2092.
  • 3Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54(1): 45-66.
  • 4Roberts S, Tarassenko L. A probabilistic resource allocation network for novelty detection. NeurM Computation, 1994, 6(2): 270-284.
  • 5Towell G G. Local expert autoassociators for anomaly detection. In: Proceedings of the 17th International Conference on Machine Learning. Stanford, USA: Morgan Kaufmann Publishers, 2000. 1023-1030.
  • 6Chcn Y X, Dang X, Peng H X, Bart H L. Outlier detection with the kernelized spatial depth function. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 288-309.
  • 7Tsang I W, Kwok J T, Cheung P. Core vector machines: fast SVM training on very large data sets. Journal of Machine Learning Research, 2005, 6:363-392.
  • 8Tsang I W, Kwok J T, Zurada J M. Generalized core vec- tor machines. IEEE Transactions on Neural Networks, 2006, 17(5): 1126-1140.
  • 9Deng Z H, Chung F L, Wang S T. FRSDE: fast reduced set density estimator using minimal enclosing ball approxima- tion. Pattern Recognition, 2008, 41(4): 1363-1372.
  • 10Chung F L, Deng Z H, Wang S T. Prom minimum enclosing )all to fast fuzzy inference system training on large datasets. [NEE Transactions on Fuzzy Systems, 2009, 17(1): 173-184.

共引文献25

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部