期刊文献+

分阶段搜索的改进人工蜂群算法 被引量:4

Improved artificial bee colony algorithm using phased search
下载PDF
导出
摘要 针对人工蜂群(ABC)及其改进算法在求解高维复杂函数优化问题时,存在求解精度低、收敛速度慢、易陷入局部寻优且改进算法控制参数多的不足,提出一种分阶段搜索的改进人工蜂群算法。该算法设计了分阶段雇佣蜂搜索策略,使雇佣蜂在不同阶段具备不同的搜索特点,降低了算法陷入局部极值的概率;定义逃逸半径,使其能够更好地指导早熟个体跳出局部极值,避免了逃逸行为的盲目性;同时,采用均匀分布结合反向学习的初始化策略,促使初始解分布均匀且质量较优。通过对优化问题中8个典型高维复杂函数的仿真实验结果表明,该改进算法求解精度更高,收敛速度更快,更加适合高维复杂函数求解。 Aiming at the shortcomings of Artificial Bee Colony( ABC) algorithm and its improved algorithms in solving high-dimensional complex function optimization problems, such as low solution precision, slow convergence, being easy to fall in local optimum and too many control parameters of improved algorithms, an improved artificial bee colony algorithm using phased search was proposed. In this algorithm, to reduce the probability of being falling into local extremum, the segmentalsearch strategy was used to make the employed bees have different characteristics in different stages of search. The escape radius was defined to guide the precocity individual to jump out of the local extremum and avert the blindness of escape operation. Meanwhile, to improve the quality of initialization food sources, the uniform distribution method and oppositionbased learning theory were used. The simulation results of eight typical high-dimensional complex functions of optimization problems show that the proposed method not only obtains higher solving accuracy, but also has faster convergence speed. It is especially suitable for solving high-dimensional optimization problems.
出处 《计算机应用》 CSCD 北大核心 2015年第4期1057-1061,共5页 journal of Computer Applications
基金 江西省教育厅科技计划项目(GJJ12398) 东华理工大学博士基金资助项目(DHBK201102)
关键词 人工蜂群算法 数值函数优化 逃逸半径 自适应 均匀分布 反向学习 Artificial Bee Colony(ABC) algorithm numerical function optimization escape radius self-adaption uniform distribution opposition-based learning
  • 相关文献

参考文献19

二级参考文献150

  • 1彭勇,施宁,林浒.佳点集遗传算法及其在PID控制中的应用[J].计算机应用研究,2009,26(2):524-526. 被引量:5
  • 2孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 3贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策,2007,22(1):117-120. 被引量:50
  • 4牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:16
  • 5KARABOGA D,BASTURK B.A powerful and efficient algorithmfor numerical function optimization:Artificial bee colony(ABC)al-gorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 6KARABOGA D,BASTURK B.On the performance of artificial beecolony(ABC)algorithm[J].Applied Soft Computing,2008,8(1):687-697.
  • 7KARABOGA D,AKAY B.A survey:Algorithms simulating beeswarm intelligence[J].Artificial Intelligence Review,2009,31(1-4):61-85.
  • 8GAO W,LIU S.Improved artificial bee colony algorithm for globaloptimization[J].Information Processing Letters,2011,111(17):871-882.
  • 9BANHARNSAKUN A,ACHALAKUL T,SIRINAOVAKUL B.Thebest-so-far selection in artificial bee colony algorithm[J].AppliedSoft Computing,2011,11(2):2888-2901.
  • 10Karaboga D, Basturk B. On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.

共引文献240

同被引文献38

  • 1KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft computing, 2008, 8(1): 687-697.
  • 2OZTURK C, KARABOGA D. Hybrid artificial bee colony algorithm for neural network training[C]//Proceedings of IEEE Congress on Evolutionary Computation. New Orleans, LA: IEEE, 2011: 84-88.
  • 3ZHANG Rui, SONG Shiji, WU Cheng. A hybrid artificial bee colony algorithm for the job shop scheduling problem[J]. International journal of production economics, 2013, 141(1): 167-178.
  • 4ZHANG Shuzhu, LEE C K M, CHOY K L, et al. Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem[J]. Transportation research part D, 2014, 31: 85-89.
  • 5ADARYANI M R, KARAMI A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem[J]. International journal of electrical power & energy systems, 2013, 53: 219-230.
  • 6ALIZADEGAN A, ASADY B, AHMADPOUR M. Two modified versions of artificial bee colony algorithm[J]. Applied mathematics and computation, 2013, 225: 601-609.
  • 7LIAO Xiang, ZHOU Jianzhong, OUYANG Shuo, et al. An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling[J]. International journal of electrical power & energy systems, 2013, 53: 34-42.
  • 8GAO Weifeng, LIU Sanyang, HUANG Lingling. Enhancing artificial bee colony algorithm using more information-based search equations[J]. Information sciences, 2014, 270: 112-133.
  • 9BABAYIGIT B, OZDEMIR R. A modified artificial bee colony algorithm for numerical function optimization[C]//Proceedings of IEEE Symposium on Computers and Communications. Cappadocia: IEEE, 2012: 245-249.
  • 10GAO Weifeng, LIU Sanyang. A modified artificial bee colony algorithm[J]. Computers & operations research, 2012, 39(3): 687-697.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部