期刊文献+

各向异性四阶偏微分方程耦合二阶偏微分方程的图像放大 被引量:2

Image enlargement based on anisotropic forth-order partial differential equation coupled to second-order partial differential equation
下载PDF
导出
摘要 针对增强图像中的弱边缘、细节纹理和消除二阶偏微分方程在图像平滑部分的阶梯效应问题,提出一种各向异性四阶偏微分方程耦合二阶偏微分方程的图像放大算法。算法通过像素的局部方差自适应约束阈值,实现图像中不同结构的各向异性四阶扩散,增强弱边缘和细节纹理,去除平滑部分阶梯效应,同时耦合改进的总变差方法和受梯度约束的冲激滤波器对边缘进行增强,放大算法采用双正交映射实现图像退化模型的约束。仿真实验证明该算法能够很好地增强边缘、细节和纹理,去除阶梯效应。与其他二阶偏微分方程放大算法比较,算法具有较好的主观视觉效果,算法放大图像的峰值信噪比(PSNR)和平均结构相似性测度(MSSIM)也高于其他二阶偏微分方程算法,其中平滑部分较多图像的PSNR比基于改进的总变差放大算法提高1 d B左右,细节纹理较多的图像提高0.5 d B以上。该算法的放大图像更加自然,弱边缘和细节能够得到分辨率增强。 To enhance the weak edges and textures and to avoid the staircase effect, an image enlargement method was proposed which coupled anisotropic forth-order partial differential equation to second-order partial differential equation. In the method, the weak edges and textures were enhanced and staircase was reduced by improved anisotropic forth-order partial differential equation with adaptive diffusion coefficient to threshold value constrained by pixel's local variance, improved total variance and adaptive amplitude shock filters controlled by gradient were coupled with the forth-order differential equation to enhance the edges, and the bi-orthogonal projection was used to realize the constraint of the degradation model. Simulation experiment results validate the proposed method on enhancing the edges, details and textures and reducing staircases.Compared with other existing second-order PDE-based zoom methods, the zoomed images using the proposed method have better visual effect and higher Peak Signal-to-Noise Ratio( PSNR) and Mean Structural Similarity Measure( MSSIM), for example, PSNR of zoomed image with larger smooth part by the proposed method is about 0. 1 d B higher than that by improved Total Variance( TV) enlargement method and PSNR of zoomed image with larger weak edges and textures by the proposed method is above 0. 5 d B higher than that by improved TV enlargement method. Therefore, the zoomed image of the method looks more natural, and the resolution of the weak edges and textures of the image are enhanced better.
作者 海涛 席志红
出处 《计算机应用》 CSCD 北大核心 2015年第4期1084-1088,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60875025)
关键词 图像放大 各向异性四阶偏微分方程 总变差 冲激滤波器 image enlargement anisotropic forth-order partial differential equation Total Variance(TV) shock filter
  • 相关文献

参考文献22

  • 1GUICHARD F, MALGOUYRES F. Edge direction preserving image zooming: a mathematical and numerical analysis [ J]. Society for In- dustrial and Applied Mathematics Journal of Numerical Analysis, 2001,39(1): 1 -37.
  • 2LI X, ORCHARD M T. New edge-directed interpolation [ J]. IEEE Transactions on Image Processing, 2001, 10(10) : 1521 - 1527.
  • 3CHA Y, KIM S. Edge-forming methods for color image zooming [ J]. IEEE Transactions on Image Processing, 2006, 15(8) : 2315 - 2323.
  • 4BAKER S, KANADE T. Limits on super-resolution and how to break them [ J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2002, 24(9) : 1167 - 1183.
  • 5BELAHMIDI A, GUICHARD F. A partial differential equation ap- proach to image zoom [ C]// Proceedings of the 2004 International Conference on Image Processing. Piseataway: IEEE Press, 2004: 649 - 652.
  • 6ALY H A, DUBOIS E. Image up-sampling using total-variation reg- ularization with a new observation model [ J]. IEEE Transactions on Image Processing, 2005, 14(10) : 1647 - 1659.
  • 7ROUSSOS A , MARAGOS P . Reversible interpolation of vectorial images by an anisotropic diffusian-projection PDE [ J]. International Journal of Computer Vision, 2009, 89(2) : 130 - 145.
  • 8GETREUER P. Contour stencils: total variation along curves for a- daptive image interpolation [ J]. Society of Industrial and Applied Mathematics Journal on Imaging Sciences, 2011,4(3):954 -979.
  • 9ALY H A, DUBOIS E. Specification of the observation model for regularized image up-sampling [ J]. IEEE Transations on Image Pro- cessing, 2005, 14(5) : 567 - 576.
  • 10PERONA P, MALIK J. Scale-space and edge detection using ani- sotropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629 -639.

二级参考文献17

  • 1Aly H A, Dubois E. Specification of the observation model for regularized image up-sampling[J].IEEE Transactions on Image Process, 2005, 14(6): 567-576.
  • 2Li X, Orchard M T. New edge-directed interpolation [J]. IEEE Transactions on Image Processing. 2001, 10 (10): 1521-1527.
  • 3Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
  • 4Huang Y L. Wavelet-based image interpolation using multilayer perceptrons U]. Neural Computing and Applications, 2005, 14(1) : 1-10.
  • 5Belahmidi A, Guichard F. A partial differential equation approach to image zoom [C] //Proceedings of International Conference on Image Processing. Washing D C: Institute of Electrical and Electronics Engineers Computer Society, 2004: 349-652.
  • 6Aly H A, Dubois E, Image up-sampling using total-varlation :egularization with a new observation model [J]. IEEE Fransactions on image processing, 2005, 14(10): 1647-1659.
  • 7Gilboa G, Sochen N, Zeevi Y Y. Forward-and backward diffusion processes for adaptive image enhancement and denoising [J]. IEEE Transactions on Image process, 2002, 11 (7) : 689-703.
  • 8Roussos A, Maragos P. Reversible interpolation of vectorial Images by an anisotropic diffusion-projection PDE [J]. International Journal of Computer Vision, 2009. 84(2): 130- 145.
  • 9Do M N, Vetterli M. Framing pyramids[J]. Transactions on Signal Processing, 2003, 51(9): 2329-2342.
  • 10Unser M. Improved least squares Laplacian pyramid for image compression [J]. Signal Process, 1992, 27(2): 187-203.

共引文献3

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部