期刊文献+

基于ICA的异常数据挖掘算法研究 被引量:15

Study of Outlier Data Mining Algorithm Based on ICA
下载PDF
导出
摘要 在传统的独立成分分析方法中,没有考虑异常数据值对分离性能的影响。该文提出了一种基于影响函数的检测方法,通过该方法可以发现隐藏在观测数据中的异常成分。利用影响函数对数据进行投影分析,对混入脉冲噪声的观测信号进行盲源分离,从而实现对脉冲噪声的消除。实验仿真结果表明,该方法可以有效且可靠地检测出所观察信号中的异常数据。 In the traditional study of independent component analysis (ICA), the outlier data had not been considered. This paper proposes a method based on influence function to find the outliers from the observed data in ICA. General, outliers have a significant influence on the separation performance of ICA. Using the influence functions to project the observed data, the impulsive noisy components which mixed in the observed data can be eliminated from the normal data. The experimental results demonstrate the effectiveness of proposed method.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第2期211-214,共4页 Journal of University of Electronic Science and Technology of China
基金 高等学校博士学科点专项科研基金(20095122110003) 地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2011Z005) 四川省教育厅自然科学项目(12ZB233)
关键词 异常数据挖掘 盲源分离 脉冲噪声 独立分量分析 信号处理 abnormal data mining blind source separation impulse noise independent component analysis signal processing
  • 相关文献

参考文献17

  • 1HERAULT J, JUTTEN C. Space or time adaptive signalprocessing by neural network models[C]//AIP ConferenceProceedings. [S.l.]. [s.n.], 1986: 151-206.
  • 2BUREL G. Blind separation of sources: a nonlinear neuralalgorithm[J]. Neural Networks, 1992,5(6): 937-947.
  • 3PARRA L, DECO G, MIESBACH S. Statisticalindependence and novelty detection with informationpreserving nonlinear maps[J]. Neural Computation, 1996,8(2): 260-269.
  • 4YANG H H, AMARI S. Adaptive online learning algorithmsfor blind separation: maximum entropy and minimummutual information[J]. Neural Computation, 1997,9(7):1457-1482.
  • 5HYVARINEN A, OJA E. Independent component analysis:Algorithms and applications[J]. Neural Networks, 2000,13(4):411-430.
  • 6DELORME A, MAKEIG S. EEGLAB: an open sourcetoolbox for analysis of single-trial EEG dynamics includingindependent component analysis[J]. Journal of NeuroscienceMethods, 2004,134(1): 9-21.
  • 7CARDOSO J F,SOULOUMIAC A. Blind beamforming fornon-Gaussian signals[J]. IEE Proceedings F (Radar andSignal Processing), 1993,140(6): 362-370.
  • 8BELL A J, SEJNOWSKI T J. An information-maximizationapproach to blind separation and blind deconvolution[J].Neural Computation, 1995, 7(6): 1129-1159.
  • 9BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F,et al. A blind source separation technique using second-orderstatistics[J]. Signal Processing, IEEE Transactions on, 1997,45(2): 434-444.
  • 10史习智.盲信号处理:理论与实践[M].上海:上海交通大学出版社,2008.

二级参考文献19

  • 1Widrow B,Mccool M,Williams S. Adaptive noise canceling:principles and application[J].Proceeding of the IEEE,1975,(12):1692-1716.
  • 2Wang Yang,Zhou Zheng-fang. Source extraction in audio via background learning[J].Inverse Problems and Imaging,2013,(1):283-290.
  • 3Hiroshi Sawada,Hirokazu Kameoka,Shoko Araki. Multichannel extensions of non-negative matrix factorization with complex-valued data[J].IEEE Transactions on Audio Speech and Language Processing,2013,(5):971-982.
  • 4Rhabi M,Fenniri H,Keziou A. A robust algorithm for convolutive blind source separation in presence of noise[J].{H}SIGNAL PROCESSING,2013,(4):818-827.
  • 5Person D. Modeling of non-Gaussian array data using cumulants:DOA estimation of more sources with less sensors[J].{H}SIGNAL PROCESSING,1993,(3):279-297.
  • 6Ye Ji-min,Jin Hai-hong,Zhang Qing-rui. Adaptive weighted orthogonal constrained algorithm for blind source sepatation[J].{H}DIGITAL SIGNAL PROCESSING,2013,(3):514-521.
  • 7Tong L,Liu R,Soon V. Indeterminacy and identifiability of blind identification[J].IEEE Transactions on Circuits System,1991,(5):499-509.
  • 8Kleinsteuber M,Shen Hao. Blind source separation with compressively sensed linear mixtures[J].{H}IEEE Signal Processing Letters,2012,(2):107-110.
  • 9Tong L,Inouye Y,Liu R. Waveform preserving blind estimation of multiple independent sources[J].{H}IEEE Transactions on Signal Processing,1993,(7):2461-2470.
  • 10Mavaddaty S,Ebrahimzadeh A. A comparative study of bees colony algorithm for blind source separation[A].Tehran,Iran,2012.1172-1177.

共引文献8

同被引文献122

引证文献15

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部