期刊文献+

关于中心外的同阶元共轭的有限群的注记 被引量:1

Remarks on the finite groups with conjugate non-central same order elements
原文传递
导出
摘要 令G是一个非Abel的有限群,并设G的中心外的同阶元是共轭的.钱国华等证明了GS3,但证明很复杂且依赖有限单群分类定理.如其所述,定理的证明是否可以避免对于有限单群分类定理的依赖是一个值得关注的问题.本文在不依赖有限单群分类定理的条件下讨论对G的Sylow 2-子群加以某个限制的几种情形的证明,如当G的Sylow 2-子群是Abel群时的证明. Let Gbe a finite non-abelian group.It is proved by Qian et al.that if non-central same order elements in Gare conjugate,then G≌S3.In order to prove this theorem,the theorem for the classification of finite simple groups is used.In this paper,we discuss the proof of some special cases that Sylow2-subgroups of Gsatisfy some condition without this theorem.For example,we prove that if Gis a finite non-abelian group with abele Sylow 2-subgroups and non-central same order elements in Gare conjugate,then G≌S3.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期241-246,共6页 Journal of Sichuan University(Natural Science Edition)
基金 新疆维吾尔自治区普通高等学校重点学科基金资助项目(2012ZDXK12)
关键词 有限群 有理群 共轭 中心. Finite group Rational group Conjugate Center
  • 相关文献

参考文献13

  • 1钱国华,游兴中,施武杰.中心外的同阶元必共轭的有限群[J].中国科学(A辑),2007,37(10):1160-1166. 被引量:4
  • 2Rose H E. A course on finite groups[M]. London: Springer-Verlag, 2009.
  • 3Isaacs I M. Character theory of finite groups[M]. Providence:AMS/Chelsea, 2006.
  • 4Kletzing D. Structure and representations of Q- groups [M]. LNM 1084. BerlinHeidelberg:New York/Tokyo: Springer-Verlag, 1984.
  • 5Rose J S. A course on group theory[M]. Cam- bridge: Campridge University Press, 1978.
  • 6Huppet B. Endliche gruppen I[M]. New York/ Heidelberg/Berlin: Springer-Verlag, 1967.
  • 7Gorenstein D. Finite groups [ M]. London/New York: Harper and Row, 1968.
  • 8张继平.关于有限群的Syskin问题[J].中国科学:A辑,1988,2:124.
  • 9Nguyen H N. Multiplicities of conjugacy class sizes of finite groups[J]. J. Algebra, 2011, 341 (1) : 250.
  • 10邵长国,施武杰,蒋琴会.单K_(3-)群的一个特征性质[J].数学进展,2009,38(3):327-330. 被引量:3

二级参考文献18

  • 1Hans Kurzweil and Bernd Stellmacher, The Theory of Finite Groups, Springer-Verlagr, Berlin: 2004.
  • 2Shi Wujie, The quantitative structure of groups and related topics, Group Theory in China(edited by Zhe-xian Wan and Sheng-ming Shi), Science Press, New York/Beijing: 1996, 161-181.
  • 3Shi Wujie, A new characterization of the sporadic simple groups, Group Theory-Porc. Singapore Group Theory Conf. 1987, Walter de Gruyter Berlin-New York: 1989.
  • 4Hall, M., The Theory of Groups, Macmillan Company, New York: 1959.
  • 5Herzog, M., On finite simple groups of order divisbleby three primes only, J. Algebra, 1968, 10: 383-388.
  • 6Conway, J.H., Curtis, R.T., Norton, S.P., etc. Atlas of Finite Groups, Oxford: Clarendon Press, 1985.
  • 7Feit W, Seitz G M. On finite rational groups and related topics. Illinois J Math, 33:103-131 (1988)
  • 8张继平.关于有限群的Syskin问题[J].中国科学:A辑:数学,1988,2:124-128.
  • 9Gow R. Groups whose characters are rationally-valued. J Algebra, 40:280-299 (1976)
  • 10Brandl R, Shi W J. Finite groups whose element orders are consecutive integers. J Algebra, 143:388-400 (1991)

共引文献7

同被引文献17

  • 1Rose H E. A course on finite groups[M]. London.. Springer-Verlag, 2009.
  • 2Isaaes I M. Character theory of finite groups[M]. Providence: AMS, 2006.
  • 3HALL M. Theory of Groups[M]. New York: Macmillan Company, 1959.
  • 4Huppert B. Character Theory of finite groups[M]. Walter der gruyter. Berlin: New York, 1998.
  • 5Gorenstein D. Finite groups [M]. London/New York: Harper and Row, 1968.
  • 6ROSE J. A Course on group Theory[M]. CAM- BRIDGE UNIVERSITY PRESS, London/New York: Melbourne, 1978.
  • 7Fet W,Seits G W. On finite rational groups and re- lated topics[J]. Illnois J Math, 1988, 33: 103.
  • 8Gorenstein D. Finte simple groups[M]. London/ New York: Plenum Press, 1982.
  • 9Suzuki M. Group theory I[M]. Berlin/Heidelberg/ New York: Springer-Verlag, 1982.
  • 10Conway J H, Curtis R T,Norton S P, et al. Atlas of finite groups[M]. Oxford: Clarendon Press, 1985.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部