期刊文献+

局部和整体共形balanced流形的关系 被引量:1

Relations between locally and global conformal balanced manifolds
原文传递
导出
摘要 证明局部共形balanced流形和整体共形balanced流形之间有如下的关系:如果一个局部共形balanced流形满足-引理,那么该局部共形balanced度量是一个整体共形balanced度量. we study the relation between locally conformal balanced manifold and global conformal balanced manifolds and prove that if a locally conformal balanced manifold satisfiesaa-lemma,then it is a global balanced manifold.
作者 连朝
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期251-254,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 局部共形balanced流形 整体共形balanced流形 aa-引理 Locally conformal balanced manifolds Global conformal balanced manifolds aa-lemma
  • 相关文献

参考文献12

  • 1Barth W P, Hulek K, Peters C A M, et al. Com- pact complex surfaces [ M]. Berlin/New York: Springer, 2004.
  • 2Abood H M, Mohammad N J. Locally conformal k/ihler manifold of pointwise holomorphic sectional curvature tensor [J]. International Mathematical Fo- rum, 2010, 45: 2213.
  • 3Dragomir S, Duggal K L. Indefinite locally confor- mal Kgthler manifolds[J]. Differential Geometry and its Applications, 2007, 25: 8.
  • 4Gherghe C. Harmonic maps and stability on locally conformal K/ahler manifolds[J]. Journal of Geometry and Physics, 2013, 70: 48.
  • 5Vilcu G E. Ruled CR-suhmanifolds of locally confor- mal Kihler manifolds[J]. Journal of Geometry and Physics, 2012, 62: 1366.
  • 6杨松.关于紧致近p-Kahler流形的全纯形变开性[J].四川大学学报(自然科学版),2013(2):241-245. 被引量:2
  • 7杨向东,郑泉.紧致局部共形Kahler流形上Morse-Novikov上同调群的一个关系[J].四川大学学报(自然科学版),2013,50(3):465-469. 被引量:1
  • 8Vaisman I. On local and global conformal Kihler manifolds[J]. Trans Amer Math Soc. 1980, 262:533-542.
  • 9Huybrechts D. Complex geometry: an Introduction [M]. Berlin/New York: Springer, 2005.
  • 10Dragomir S, Ornea L. Locally conformal Ktihler ge- ometry[M]. Progress in Math 155. Boston/Basel: Birkhtiuser, 1998.

二级参考文献20

  • 1Gray A and Hervella L M. The sixteen classes of al- most Hermitian manifolds and their linear invariants [J]. Annali Mat Pura Appl, 1980, 123.. 35.
  • 2Fu J X, Wang Z Z, Wu D. Semilinear equations, the γk function, and generalized Gauduchon metrics [EB/OL]. http://arxiv, org/pdf/1010. 2013. pdf.
  • 3Popoviei D. Deformations openness and elosedness of various classes of compact complex manifolds; exam- ples[EB/OL], http..//arxiv, org/pdf/1102. 1687v1. pdf.
  • 4Kodaira K, Spencer D C. On deformations of com- plex analytic structures. III. stability theorems for complex structures[J]. Ann Math, 1960, 71 (1): 43.
  • 5Alessandrini L, Bassanelli G. Small deformations of a class of compact non-K/ihler manifolds[J].Proc Amer Math Soc, 1990, 109: 1059.
  • 6Wu C C. On the geometry of superstrings with tor- sion[D]. PHD Thesis. Cambridge: Department of Mathematics, Harvard University, 2006.
  • 7Fu J X, Yau S T. A note on small deformation of Balanced manifolds[EB/OL], http: ff arxiv, org/pdf/ 1105. 0026v2. pdf.
  • 8Michelsohn M L. On the existence of special metrics in complex geometry[J]. Acta Math, 1982, 149: 261.
  • 9Kodaira K. Complex manifolds and deformations of complex structures[M]. Springer: Grundlehren der Math Wiss, 1986.
  • 10Voisin C. Hodge theory and complex algebraic ge- ometry I[M]. Cambridge studies in advanced Math- ematics 76, 77. Cambridge.. Cambridge University Press, 2003.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部