期刊文献+

基于双尺度SIFT描述符及搜索区域限制的图像匹配算法 被引量:2

A image matching algorithm based on SIFT descriptors with double scales and limited searching region
原文传递
导出
摘要 针对尺度不变特征变换(SIFT)算法的匹配结果存在大量的错误匹配点对,提出一种基于双尺度SIFT描述符及搜索区域限制的图像匹配算法(DSLSR-SIFT).该方法使用双尺度描述符来计算初始匹配点集,然后加入局部搜索区域限制条件在初始匹配点集中剔除偏离区域限制条件较大的点对从而得到提炼的匹配结果.最后,利用随机抽样一致性(RANSAC)算法进行评估两种算法的匹配结果.实验结果表明,本方法比SIFT算法在匹配正确率上平均提高了17%左右,显著地提高了匹配精度. Since the matching result of scale invariant feature transform(SIFT)algorithm has many false matching points,a image matching algorithm based on SIFT descriptors with double scales and limited searching region(DSLSR-SIFT)is proposed.The method uses double scales descriptors to calculate the preliminary matching points set,then local limited searching region condition is added in the preliminary matching points set to remove the points which are far away from the limited region condition and obtains refined matching result.Finally,the random sample consensus(RANSAC)algorithm is used to evaluate the matching results.Experiment results show that the correct rate of this algorithm is better than SIFT algorithm on average of about 17%,which significantly improves the matching accuracy.
作者 李文华 李征
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期293-298,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61471250)
关键词 图像匹配 SIFT 随机抽样一致性 街区距离 正确率 Image matching SIFT RANSAC City block distance Accuracy
  • 相关文献

参考文献13

  • 1Lowe D. Distinctive image features from scale invar- iant keypoints[J]. International Journal of Comput- er Vision, 2004, 60(2): 91.
  • 2Herbert B, Tinne T, Van G L. SURT: Speeded up robust features[J]. Computer Vision and Image Un- derstanding, 2008, 110(3): 346.
  • 3Harris C, Stephens M. Acombined corner and edge deetion[J]. Image Vision Computing, 1998, 15(6) : 121.
  • 4Matas J, Chum O, Urban M, et al. Robust wide baseline stereo from maximally stable extremal re- gions[C]//Proeeedings of the British Machine Vi- sion Conference. Cardiff, Britian: BMVA, 2002.
  • 5Ke Y, Sukthankar R. PCA-SIFT: A more distinc- tive representation for local image descriptors[C]// Proceeding of the Computer Vision and Pattern Rec- ognition. Washington, DC, USA: IEEE, 2004.
  • 6Morel J M, Yu G S. ASIFT: A new framework for fully affine invariant image comparison[J]. Society for Industry and Applied Mathematics, 2009, 2 (2) : 438.
  • 7Alaa E, Abdel H, Aly A F. CSIFT: A SIFT de- scriptor with color invariant characteristics [C]// Proceedings of the IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition. New York City, USA: IEEE, 2006.
  • 8Su D L, Wu J, Cui Z M, etc. CGC1-SIFT: A more efficient and compact representation of local descrip- tor[J]. Measurement Science Review, 2013, 13 (3) : 132.
  • 9唐朝伟,肖健,邵艳清,苗光胜.一种改进的SIFT描述子及其性能分析[J].武汉大学学报(信息科学版),2012,37(1):11-16. 被引量:20
  • 10于丽莉,戴青.一种改进的SIFT特征匹配算法[J].计算机工程,2011,37(2):210-212. 被引量:45

二级参考文献24

  • 1周颜军.数据结构[M].长春:吉林科学技术出版社,2003.
  • 2张鹏强,余旭初,韩丽,刘景正.基于直线特征匹配的序列图像自动配准[J].武汉大学学报(信息科学版),2007,32(8):676-679. 被引量:13
  • 3刘进,闫利.图像相关匹配算法的快速实现[J].武汉大学学报(信息科学版),2007,32(8):684-687. 被引量:12
  • 4Moravee H P. Towards Automatic Visual Obstacle Avoidance[C]l/ Proc. of the 5th International Joint Conference on Artificial Intelligence. [S. l.]: Springer-Velag, 1977.
  • 5Harris C, Stephens M. A Combined Corner and Edge Detector[C]// Proc. of the 4th Alvey Vision Conference. Manchester, UK: [s. n.], 1988.
  • 6Lowc D G, Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 8Yan Ke, Sukthankar R. PCA-SIPT: A More Distinctive Repre- sentation for Local Image Descriptors[C]//Proc. of CVPR'04. [S. l.]: IEEE Press, 2004.
  • 9Mortensen E N, Deng Hongli, Shapiro L. A SIFT Descriptor with Global Context[C]//Proc. of CVPR'05. San Diego, California, USA: IEEE Press, 2005.
  • 10Moreno P, Bernardino A, Victor S J. Improving the SIFT Descriptor with Smooth Derivative Filters[J]. Pattern Recognition Letters, 2009, 30(1): 18-26.

共引文献62

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部