期刊文献+

微尺度输流管道考虑热效应的流固耦合振动分析 被引量:4

Fluid-structure interaction of microtubes conveying fluid considering thermal effect
下载PDF
导出
摘要 研究热环境中输送微流体的微尺度管道流固耦合振动问题。根据线性热弹性理论建立系统振动控制方程,并利用复模态法对其进行求解,得到了系统的固有频率和屈曲失稳临界流速,讨论了温度变化、微尺度效应及管道壁厚对系统振动特性的影响。研究结果表明:提高环境温度会降低系统的固有频率和临界流速;管道和流体的微尺度效应分别会使临界流速升高和降低,但微流体的这种影响会随着温度的升高而逐渐减弱并最终消失;管壁较薄(外径接近微尺度特征尺寸)时,壁厚的变化对固有频率的影响很大,而管壁较厚时,温度变化对固有频率的影响更为明显。 The fluid-structure interaction( FSI) properties of microtubes conveying micro-flow in temperature field were investigated. The governing equation of the system was established based on the linear thermoelastic theory and then solved by using the complex mode method. The natural frequencies and critical flow velocities for buckling instability of the system were obtained and the influences of temperature variation,micro size effect and tube thickness on the vibration characteristics were discussed. The results showed that increasing temperature decreases the natural frequencies and critical flow velocities; the size effect of microtube can increase the critical flow velocities,while the size effect of microflow decreases them,moreover,the size effect of micro-flow declines and even disappears with increase in temperatures;the variation of tube thickness greatly affects the natural frequencies when the thickness is smaller( the outer diameter of tube is close to the characteristic length of micro-structures),however temperature variation has dominant effect on the natural frequencies when the thickness is larger.
作者 梁峰 包日东
出处 《振动与冲击》 EI CSCD 北大核心 2015年第5期141-144,共4页 Journal of Vibration and Shock
基金 国家自然科学基金(51275315) 辽宁省教育厅科研项目(L2013160)
关键词 微尺度输流管道 流固耦合 热效应 温度 尺度效应 microtube conveying fluid fluid-structure interaction thermal effect temperature size effect
  • 相关文献

参考文献17

  • 1付永领,荆慧强.弯管转角对液压管道振动特性影响分析[J].振动与冲击,2013,32(13):165-169. 被引量:45
  • 2张计光,陈立群,钱跃竑.Winkler地基上黏弹性输流管的参数共振稳定性[J].振动与冲击,2013,32(13):137-141. 被引量:5
  • 3Yang T Z, Ji S D, Yang X D, et al. Microfluid-induced non- linear free vibration of microtubes [ J ]. International Journal of Engineering Science, 2014, 76 : 47 - 55.
  • 4Najmzadeh M, Haasl S, Enoksson P. A silicon straight tube fluid density sensor [ J]. Journal of Micromechanics and Mi- croengineering, 2007, 17(8): 1657- 1663.
  • 5Rinaldi S, Probhakar S, Vengallatore S, et al. Dynamics of microscale pipes containing internal fluid flow: damping fre- quency shift and stability [ J ]. Journal of Sound and Vibra- tion, 2010, 329(8) : 1081 - 1088.
  • 6McFarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors [ J ]. Journal of Micromechanics and Microengineering, 2005, 15(5): 1060 -1067.
  • 7Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity [ J ]. Journal of the Me- chanics and Physics of Solids, 2003, 51 (8) : 1477 -1508.
  • 8Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity: theory and experiment [ J]. Acta Metallurgica et Materialia, 1994, 42(2): 475-487.
  • 9Padoussis M P, Luu T P, Probhakar S. Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow [J]. Journal of Fluids and Structures, 2008, 24 (I): 111 - 128.
  • 10Wang L. Size-dependent vibration characteristics of fluid-con- veying microtubes [ J ]. Journal of Fluids and Structures, 2010, 26(4) : 675 -684.

二级参考文献15

  • 1徐鉴,杨前彪.输液管模型及其非线性动力学近期研究进展[J].力学进展,2004,34(2):182-194. 被引量:38
  • 2王建平,沈燕良,曹克强.液压导管疲劳破裂与液体压力关系的研究[J].机床与液压,2006,34(5):113-115. 被引量:4
  • 3Hambric S A, Boger D A, Fahnline J B,et al. Structure-and fluid-borne acoustic power sources induced by turbulent flow in 90° piping elbows [ J ]. Journal of Fluids and Structures, 2010, 26 : 121 - 147.
  • 4Young Y L. Fluid structure interaction analysis of flexible composite marine propellers [ J ]. Journal of Fluids and Structures, 2008, 24: 799- 818.
  • 5Lee C J K, Noguchi H, Koshizuka S. Fluid shell structure interaction analysis by coupled particle and finite element method [ J ]. Computers and Structures, 2007, 85: 688 - 697.
  • 6Bathe K J, Zhang H. A mesh adaptivity procedure for CFD and fluid-structure interactions [ J ]. Computers and Structures, 2009,87:604 -617.
  • 7Tijsseling A S. Water hammer with fluid-structure interaction in thick-walled pipes [ J ]. Computers and Structures, 2007, 85 : 844 - 851.
  • 8Ashley H, Havilland G. Bending vibrations of a pipeline containing flowing fluid [ J ]. Journal of Applied Mechanics, 1950, 17 : 229 - 232.
  • 9章思骥,王文杰.液压管道系统的动态响应分析[J].强度与环境,1987,1:6-13.
  • 10Tijsseling A S, Vardy A E,Fan D. Fluid-structure interaction and cavitation in a single-elbow pipe system [ J ]. Journal of Fluids and Structures, 1996, 10:395 -420.

共引文献48

同被引文献22

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部