期刊文献+

结合催化气化过程的高效直接碳固体氧化物燃料电池(英文)

Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process
下载PDF
导出
摘要 This study explores strategies to develop highly efficient direct carbon fuel cells(DCFCs) by com-bining a solid-oxide fuel cell(SOFC) with a catalyst-aided carbon-gasification process. This system employs Cu/CeO 2 composites as both anodic electrodes and carbon additives in a cell of the type: carbon|Cu-CeO 2/YSZ/Ag|air. The study investigates the impact on in situ carbon-gasification and DCFC performance characteristics of catalyst addition and variation in the carrier gas used(inert He versus reactive CO2). The results indicate that cell performance is significantly improved by infusing the catalyst into the carbon feedstock and by employing CO2 as the carrier gas. At 800 ℃, the maxi-mum power output is enhanced by approximately 40% and 230% for carbon/CO2 and car-bon/catalyst/CO2 systems, respectively, compared with that of the carbon/He configuration. The increase observed when employing the catalyst and CO2 as the carrier gas can be primarily at-tributed to the pronounced effect of the catalyst on carbon-gasification through the re-verse-Boudouard reaction, and the subsequent in situ electro-oxidation of CO at the anode three-phase boundary. This study explores strategies to develop highly efficient direct carbon fuel cells(DCFCs) by com-bining a solid-oxide fuel cell(SOFC) with a catalyst-aided carbon-gasification process. This system employs Cu/CeO 2 composites as both anodic electrodes and carbon additives in a cell of the type: carbon|Cu-CeO 2/YSZ/Ag|air. The study investigates the impact on in situ carbon-gasification and DCFC performance characteristics of catalyst addition and variation in the carrier gas used(inert He versus reactive CO2). The results indicate that cell performance is significantly improved by infusing the catalyst into the carbon feedstock and by employing CO2 as the carrier gas. At 800 ℃, the maxi-mum power output is enhanced by approximately 40% and 230% for carbon/CO2 and car-bon/catalyst/CO2 systems, respectively, compared with that of the carbon/He configuration. The increase observed when employing the catalyst and CO2 as the carrier gas can be primarily at-tributed to the pronounced effect of the catalyst on carbon-gasification through the re-verse-Boudouard reaction, and the subsequent in situ electro-oxidation of CO at the anode three-phase boundary.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2015年第4期509-516,共8页
基金 financial support from the EU project "Efficient Conversion of Coal to Electricity-Direct Coal Fuel Cells" which is funded by the Research Fund for Carbon & Steel (RFCR CT-2011-00004) King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
关键词 固体氧化物燃料电池 二氧化碳 气化过程 催化剂 电力 电池性能 CO2 SOFC Direct carbon fuel cell Internal catalytic gasification Copper/ceria anode Copper/ceria catalyst
  • 相关文献

参考文献1

二级参考文献2

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部