摘要
A visible-light photocatalyst containing Ag2Se and reduced graphene oxide(RGO) was synthesized by a facile sonochemical-assisted hydrothermal method. X-ray diffraction, scanning electron mi-croscopy with energy-dispersive X-ray analysis, and ultraviolet-visible diffuse reflectance spectros-copy results indicated that the RGO-Ag2Se nanocomposite contained small crystalline Ag2Se nano-particles dispersed over graphene nanosheets and absorbed visible light. The high crystallinity of the nanoparticles increased photocatalytic activity by facilitating charge transport. N2 adsorp-tion-desorption measurements revealed that the RGO-Ag2Se nanocomposite contained numerous pores with an average diameter of 9 nm, which should allow reactant molecules to readily access the Ag2Se nanoparticles. The RGO-Ag2Se nanocomposite exhibited higher photocatalytic activity than bulk Ag2Se nanoparticles to degrade organic pollutant rhodamine B and industrial dye Texbrite BA-L under visible-light irradiation(λ > 420 nm). The generation of reactive oxygen spe-cies in RGO-Ag2Se was evaluated through its ability to oxidize 1,5-diphenylcarbazide to 1,5-diphenylcarbazone. The small size of the Ag2Se nanoparticles in RGO-Ag2Se was related to the use of ultrasonication during their formation, revealing that this approach is attractive to form po-rous RGO-Ag2Se materials with high photocatalytic activity under visible light.
A visible-light photocatalyst containing Ag2Se and reduced graphene oxide(RGO) was synthesized by a facile sonochemical-assisted hydrothermal method. X-ray diffraction, scanning electron mi-croscopy with energy-dispersive X-ray analysis, and ultraviolet-visible diffuse reflectance spectros-copy results indicated that the RGO-Ag2Se nanocomposite contained small crystalline Ag2Se nano-particles dispersed over graphene nanosheets and absorbed visible light. The high crystallinity of the nanoparticles increased photocatalytic activity by facilitating charge transport. N2 adsorp-tion-desorption measurements revealed that the RGO-Ag2Se nanocomposite contained numerous pores with an average diameter of 9 nm, which should allow reactant molecules to readily access the Ag2Se nanoparticles. The RGO-Ag2Se nanocomposite exhibited higher photocatalytic activity than bulk Ag2Se nanoparticles to degrade organic pollutant rhodamine B and industrial dye Texbrite BA-L under visible-light irradiation(λ 420 nm). The generation of reactive oxygen spe-cies in RGO-Ag2Se was evaluated through its ability to oxidize 1,5-diphenylcarbazide to 1,5-diphenylcarbazone. The small size of the Ag2Se nanoparticles in RGO-Ag2Se was related to the use of ultrasonication during their formation, revealing that this approach is attractive to form po-rous RGO-Ag2Se materials with high photocatalytic activity under visible light.
出处
《催化学报》
SCIE
EI
CAS
CSCD
北大核心
2015年第4期603-611,共9页