摘要
考虑产品需求受货架展示量和零售价格影响的市场环境中,单制造商与两零售商的供应链货架空间和定价博弈。制造商与两零售商间展开制造商Stackelberg博弈,两零售商之间展开Nash博弈。建立了单制造商两零售商关于货架空间分配和零售价格的博弈模型,得到了此模型的解析解并据此分析解的特性。数值实验研究表明:1制造商提供的批发价格随着货架空间弹性的增大而保持不变,而零售价格和货架展示量以及零售商和两制造商的利润在下降;2市场规模越大的零售商所获得利润更多。因此,制造商和零售商要想获得更高的利润,应该扩大市场规模,增加货架展示量。
Consider a two-echelon supply chain consisting of one dominant manufacturer and two retailers as followers. They play Manufacturer-Stackelberg game and two retailers play Nash game with each other. Assume the demand depends on their displayed quantity on the shelves and their selling prices. A game model was developed to provide the wholesale price of the manufacturer and shelf space allocation and pricing policy of the retailers. The properties of the optimal solution are analyzed. Some managerial insights are obtained by numerical examples:(1) The retailing prices and shelf spaces allocated and the profits of the players decrease when sensitivity of cross-displayed quantity increases;(2) The higher the size of retailers' market size, the higher the profits of all players in the supply chain. Thus, in order to obtain higher profits, manufacturer and retailers should expand the market sizes and increase the amount of shelf displays.
出处
《物流工程与管理》
2015年第2期54-58,共5页
Logistics Engineering and Management
基金
国家自然科学基金(71201044
70971041
71101002
70971035)
国家社会科学基金(12CGL041
10CGL024)
合肥工业大学博士学位专项基金(2012HGBZ0197)