期刊文献+

认知无线电中基于支持向量机的频谱空闲度预测

SVM-based prediction of spectrum idle rate in cognitive radio systems
下载PDF
导出
摘要 研究认知无线系统中的频谱小时空闲度预测问题,针对GSM系统的载频小时空闲度时间序列的非线性特点,提出一种基于支持向量机的预测模型构建方法。为提高模型的预测精度,在GSM系统小时空闲度时间序列特征分析的基础上,利用序列的节假日特性和日周期特性,对数据序列进行了重构。仿真结果表明,与采用基于神经网络的预测模型相比,该预测方法对工作日和周末均具有较高的预测精度,其预测绝对百分比误差在4以内。 A construction method of SVM-based prediction model for the spectrum idle rate in cognitive radio systems is proposed according to the non-linear characteristics of carrier frequency idle rate time sequence of GSM system. To enhance the prediction accuracy of the model, the data sequence is reconstructed according to the holiday and daily-cycle properties, and feature analysis of the idle rate time sequence of GSM system. The simulation results show that the proposed model has more accurate prediction in workday and weekend than the prediction model based on neural network. The absolute percentage error of its prediction is within 4.
作者 李红岩
出处 《现代电子技术》 北大核心 2015年第7期19-22,共4页 Modern Electronics Technique
基金 河南省科技攻关项目(132102110220) 河南省教育厅重点研究项目资助(14B510016) 河南工业大学横向科研合作项目(151319)
关键词 支持向量机 频谱预测 认知无线电 神经网络 support vector machine spectrum prediction cognitive radio neural network
  • 相关文献

参考文献9

  • 1HAYKIN S.Cognitive radio:brain-empowered wireless communications[J].IEEE Journal of Selected Areas in Communications,2005,23(2):201-220.
  • 2KARTLAK H.Performance improvement of secondary user transmission in cognitive radio networks[C]//2012 20th Signal Processing and Communications Applications Conference(SIU).[S.l.]:[s.n.],2012:1-4.
  • 3CACCIAPUOTI A S.Primary-user mobility impact on spectrum sensing in cognitive radio networks[C]//2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC).[S.l.]:IEEE,2011:451-456.
  • 4CAGATAY Talay,ALTILAR A T,KHALID D,et al.Impact of mobility prediction on the performance of cognitive radio networks[C]//2010 Wireless Telecommunications Symposium(WTS).[S.l.]:[s.n.],2010:1-5.
  • 5YARKAN S,ARSLAN H.Binary time series approach to spectrum prediction for cognitive radio[C]//Proceedings of 2007IEEE 66th Vehicular Technology Conference.[S.l.]:IEEE,2007:1563-1567.
  • 6TUMULURU V K,WANG P,NIYATO D.A neural network based spectrum prediction scheme for cognitive radio[C]//Proceedings of 2010 IEEE International Conference on Communications.[S.l.]:IEEE,2010:1-5.
  • 7后茂森,谢显中.基于马氏链的感知无线电信道状态预测及容量估计[J].重庆邮电大学学报(自然科学版),2009,21(6):710-716. 被引量:5
  • 8VAPNIK V N.The nature of statistical learning theory[M].New York:Springer,1995.
  • 9蔡希,罗亚丹,黄海晖,周远明.GSM频谱有效使用的研究(上)[J].广东通信技术,2000,20(3):7-12. 被引量:1

二级参考文献7

  • 1YANGCheng ZHOUZheng WANGShu-bin etal.Block Turbo code modulation for MB-OFDM-based cognitive radio to suppress its side-band interferences .The Journal of China Universities of Posts and Telecommunications(中国邮电高校学报:英文版),2009,16(2):29-34.
  • 2SRINIVASA Sudhir, JAFAR Syed Ali. The throughput potential of cognitive radio: a theoretical perspective[J]. IEEE Communications Magazine, 2007: 73-79.
  • 3WILD B, RAMCHANDRAN K. Detecting primary receivers for cognitive radio applications [ C ]//In Proc. of the First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks. USA : IEEE Press,2005 : 124- 130.
  • 4TANG H. Some physical layer issues of wide-band cognitive radio systems [ C]//In New Frontiers in Dynamic Spectrum Access Networks,2005. DySPAN 2005. 2005 First IEEE International Symposium. USA:IEEE Press, 2005 : 151-159.
  • 5HAYKIN S, HUBER K, CHEN Z. Bayesian sequential state estimation for MIMO wireless communications [ J ]. Proceedings of the IEEE , 2004,92(3) :439-454.
  • 6DEVROYE N, MITRAN P, TAROKH V. Achievable rates in cognitive radio channels [ J ]. IEEE Transactions on Information Theory, 2006,52 ( 5 ) : ! 813-1827.
  • 7杨晓燕,杨震,刘善彬.基于预测机制的认知无线电机会频谱接入[J].重庆邮电大学学报(自然科学版),2009,21(1):14-19. 被引量:12

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部