期刊文献+

最小盈余约束下风险模型的最优分红策略 被引量:4

Optimal Dividend Strategies of Classical Risk Model with Minimum Surplus Constraints
下载PDF
导出
摘要 研究带干扰的经典风险模型的最优分红和注资策略问题。在带最小盈余约束的情况下以股东的折现分红减去惩罚折现注资的差的期望值最大化为目标,利用随机控制理论建立相应的HJB方程,最终得到相应的解及最优分红策略。 The optimal dividend and capital injection of the classical risk model with disturbance was researched.In the presence of minimum surplus constraints,the expected value of the shareholders discounted dividend minus the penalized discounted capital injections was maximized.The corresponding HamiltonJacobi-Bellman equation was constructed by using the stochastic control theory and finally the solution to the HJB equation and the optimal dividend strategy were obtained.
作者 岳毅蒙
出处 《甘肃科学学报》 2015年第2期19-24,共6页 Journal of Gansu Sciences
基金 陕西省教育科学"十二五"规划课题(SGH13406) 商洛学院科研项目(10SKY1008) 商洛学院教改项目(13jyjx118)
关键词 分红 注资 随机控制 HJB方程 Dividend Capital injection Stochastic control Hamilton-Jacobi-Bellman equation
  • 相关文献

参考文献13

  • 1Sethi S P, Taksar M I. Optimal Financing of a Corporation Subject to Random Returns[J]. Mathematical Finance, 2002,12 (2) :155-172.
  • 2Borci K. The Rescue of an Insurance Company after Ruin[J]. Astin Bulletin, 1968,15:280-292.
  • 3张帅琪,刘国欣.复合Poisson模型带比例与固定交易费用的最优分红与注资[J].中国科学:数学,2012,42(8):827-843. 被引量:7
  • 4Schmidli H. Optimal Dividend Strategies in a Cramer-Lund-Berg Model with Capital Injections [J]. lnsuranee:Mathemat-cs and Econom- ics, 2008,5 : 1-9.
  • 5Scheer N, Schmidli H. Optimal Dividend Strategies in a Cramer-Lundberg Model with Capital Injections and Administration Costs[J]. European Actuarial Journal,2011,1(1) :57-92.
  • 6Hunting M, Paulsen J. Optimal Dividend Policies with Transaction Costs for a Class of Jump-dlffusion Processes[J]. Finance and Stochas- tics, 2013,17(1) : 73-106.
  • 7Zhu J. Optimal Dividend Control for a Generalized Risk Model with Investment Incomes and Debit Interest[J]. Scandinavian Actuarial Journal, 2013,2 :140-162.
  • 8Eisenbcrg J,Schmidli H. Optimal Control of Capital Injections by Reinsurance in a Diffusion Approximation[J]. Blatter der DGVFM, 2009,30(1) :1-13.
  • 9Eisenberg J,Schmidli H. Minimising Expected Discounted Capital Injections by Reinsurance in a Classical Risk Model[J]. Scandinavian Actuarial Journal, 2011,3 : 155-176.
  • 10Albrecher H, Thonhauser S. Optimality Results for Dividend Problems in Insurance[J]. RACSAM-Revista de la Real Academia de Cien- cias Exactas, Fisicas y Naturales. Serie A. Matematicas,2009,103(2) : 295-320.

二级参考文献7

共引文献6

同被引文献21

  • 1Scheer N, Schmidli H. Optimal Dividend Strategies in a Cra- met-Lundberg Model with Capital Injections and Administra tion Costs[J].European Actuarial Journal, 2011,1 ( 1 ) : 57-92.
  • 2Schmidli H. Optimal Dividend Strategies in a Cramer-Lund Berg Model with Capital Injections[J].Insurance: Mathemat- ics and Economics, 2008,5 : 1-9.
  • 3Hunting M,Paulsen J.Optimal Dividend Policies with Trans action Costs for a Class of Jump diffusion Processes[J].Fi- nance and Stochastics, 2013,17(1) : 78-106.
  • 4Zhu J.Optimal Dividend Control for a Generalized Risk Model with Investment Incomes and Debit Interest[J].Scandinavian Actuarial Journal,2013, (2) :140-162.
  • 5Eisenberg J,Schmidli H.Optimal Control of Capital Injections by Reinsurance in a Diffusion Approximation[J].Blatter Der DGVFM, 2009,30(1) : 1-13.
  • 6Eisenberg J, Schmidli H. Minimising Expected Discounted Capital Injections by Reinsurance in a Classical Risk Model[J].Scandinavi an Actuarial Journal,2011, (3) : 155-176.
  • 7Gerber H U,Shiu E S W. On Optimal Dividend Strategies in the Compound Poisson Model[J].North American Actuarial Journal, 2006,10 (2) : 76-93.
  • 8Avram F,Palmowski Z,Pistorius M R. On the Optimal Divi-dend Problem for a Spectrally Negative Levy Process[J].The Annals of Applied Probability, 2007,17(1) : 156-180.
  • 9唐胜达,秦永松.Markov随机环境过程驱动的风险过程[J].广西师范大学学报(自然科学版),2012,30(1):35-39. 被引量:2
  • 10张帅琪,刘国欣.带注资的二维复合泊松模型的最优分红(英文)[J].运筹学学报,2012,16(3):119-131. 被引量:7

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部