摘要
In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 ?W, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.
In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 μW, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.
基金
supported by the National Basic Research Program of China(Grant No.2012CB922104)
the National Natural Science Foundation of China(Grant Nos.11204357,11174027 and 11121403)