期刊文献+

一种层次初始的聚类个数自适应的聚类方法研究 被引量:6

Research on a method of self-adaptation of the number of clusters for hierarchical initialization clustering
下载PDF
导出
摘要 K均值聚类算法是一种常见且有效的基于划分的聚类算法。为解决该聚类算法对初始中心敏感的问题,常用的方法是层次化初始聚类中心。然而,层次初始的聚类算法仍然需要将聚类个数作为输入参数,在高维数据和海量数据中不易应用。基于能够自动确定聚类数目的目的,采用DBI度量,提出一种层次初始的聚类个数自适应的聚类方法(简称DHIKM)。通过UCI数据集和仿真数据上的实验,证明DHIKM可以在采样数据中快速找到合适的聚类个数,实验结果表明该算法在聚类质量与收敛速度上的有效性。 K-means algorithm is a common and effective clustering algorithm based on partition. To solve the problem of sensitivity of initial cluster centers, the most frequently used method is searching optimal initial cluster centers by hierarchically initializing. However, it also takes the number of clusters as the argument. It is so difficult to give the number of clusters for the high dimensional data and large volume data that the hierarchal initialization K-means cannot be directly applied. To address this problem, this paper proposes a Davies Bouldin Index(DBI) based hierarchical initialization K-means(DHIKM) algorithm through integrating DBI metric into hierarchical initialization K-means algorithm. By DBI metric, DHIKM can quickly determine the number clusters on sampled data. Experiments on UCI dataset and synthetic data demonstrate the effectiveness of the proposed algorithm.
出处 《电子设计工程》 2015年第6期5-8,共4页 Electronic Design Engineering
基金 国家中医药管理局重点学科(中医药信息学)开放课题资助(ZYYXXX-13)
关键词 K均值算法 层次初始化 戴维森堡丁指数 初始聚类中心 聚类个数 K-means hierarchically initializing Davies Bouldin Index initial cluster centers cluster number
  • 相关文献

参考文献6

  • 1Lu J F,Tang J B,Tang Z M. Hierarchical initialization approach for K-means clustering [J]. Pattern Recognition Letters, 2008 (29):787-795.
  • 2MA Cai-rong, DAI Qin, LIU Shi-bin. A hybrid PSOISODATA algorithm for remote sensing image segmentation [C]//Pro- ceeding of the 2012 International Conference on Industrial Control and Electronics Engineering(ICICEE). Xi'an,China: IEEE,2012:1371-1375.
  • 3Krista Rizman Zalik,Borut Zalik. Validity index for clusters of different sizes and densities [J]. Pattern Recognition Letters, 2011,32 ( 2 ) :221-234.
  • 4Volker Lohweg.UC Irvine Machine Learning Repository[EB/ OL] (2012-08) [2014-06-03].http://arehive.ics.uci.edu/ml/ datasets/banknote+authentication.
  • 5An Introduction to Information Retrieval[M]. England: Cam- bridge University Press,2009:355-357.
  • 6梁绍一,韩德强,韩崇昭.一种基于几何关系的多分类器差异性度量及其在多分类器系统构造中的应用[J].自动化学报,2014,40(3):449-458. 被引量:8

二级参考文献3

共引文献7

同被引文献43

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部