期刊文献+

基于MapReduce的SimRank算法在图聚类中的应用 被引量:3

Application of Sim Rank algorithm on graph clustering based MapReduce
下载PDF
导出
摘要 由Jeh和Widom提出的Sim Rank算法是一种普适"结构相似度"计算模型。由于Sim Rank算法采用迭代方式计算图节点间相似性,因此时间复杂度和空间复杂度都非常高。随着数据量的激增,单机运算能力不能满足大规模数据的计算要求。本文提出了基于Map Reduce计算模型的分布式Sim Rank算法,利用该算法对RDF图进行相似度度量,然后利用分布式的AP聚类算法对图节点进行聚类分析。实验结果表明,该方法能够高效的完成图节点的相似度度量,实现图的有效聚类。 The Sim Rank algorithm proposed by Jeh and Widom is a pervasive similarity calculation model. Because the Sim Rank algorithm using iterative calculation graph node similarity, so the time complexity and the space complexity is very high. With the rapid increase of data,single machine can not meet the requirements of mass data calculation. This paper presents a distributed Sim Rank algorithm based on Map Reduce computing model, we use it to measure the similarity of RDF,and then use the distributed AP clustering algorithm to cluster graph nodes. Experiment demonstrates this method can measure the similarity efficiently and implement graph clustering.
出处 《电子设计工程》 2015年第6期9-11,15,共4页 Electronic Design Engineering
基金 辽宁省自然科学基金(2013020014) 中国高等职业技术教育研究会规划课题(GZYGH1213036 GZYGH1213035)
关键词 SIM RANK MAP REDUCE RDF AP聚类 Sim Rank Map Reduce RDF AP clustering
  • 相关文献

参考文献8

  • 1王浩成,马静.高效的大型图聚类方法研究[J].小型微型计算机系统,2013,34(6):1417-1423. 被引量:1
  • 2杜方,陈跃国,杜小勇.RDF数据查询处理技术综述[J].软件学报,2013,24(6):1222-1242. 被引量:64
  • 3Zhao P,Han J,Sun Y. P-rank: A comprehensive structural similarity measure over information networks[C]//Internation- al Conference on Information and Knowledge Management, 2009:553-562.
  • 4Jeh G,Widom J. SimRank:a measure of structural-context similarity [J]. In Proceedings of the eighth ACM SIGKDD conference(KDD'02),2002:538-543.
  • 5韩启龙,潘海为,蔡绍滨,姚念民,印桂生.结构-属性平衡图节点相似度测量算法[J].计算机工程与应用,2013,49(1):15-18. 被引量:4
  • 6Khosravi-Farsani H,Nematbaksh M,Lausen G. Structure/ attribute computation of similarities between nodes of a RDF graph with application to linked data clustering[J]. Intelligent Data Analysis,2013,17(2): 179-194.
  • 7孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2392
  • 8Frey B,Dueck D. Clustering by passing messages between data points[J]. Science, 2007,315 (5814):972-976.

二级参考文献190

  • 1李曼,杜小勇,王珊.语义Web环境中本体库管理系统体系结构研究[J].计算机研究与发展,2006,43(z3):39-45. 被引量:2
  • 2Majumdar D, Kanjilal A, Bhattacharya S.Separation of scat- tered concerns: a graph based approach for aspect mining[C]// Proceedings of ACM SIGSOFT Software Engineering Notes,2011:1-11.
  • 3Sengupta S, Kanjilal A, Bhattacharya S.Measuring complexity of component based architecture: a graph based approach[C]// Proceedings of ACM SIGSOFT Software Engineering Notes, 2011:1-10.
  • 4Schaeffer S E.Graph clustering[J].Computer Science Review, 2007( 1 ) : 27-64.
  • 5Tian Y, Hankins A, Patel J M.Efficient aggregation for graph summarization[C]//Proceedings of SIGMOD' 08, Vancouver, Canada, 2008 : 567-580.
  • 6Zhou Y,Cheng H,Yu J X.Graph clustering based on struc- tural/attribute similarities[C]//Proceedings of VLDB 2009, 2009:718-729.
  • 7Frey B J, Dueck D.Clustering by passing messages between data points[J].Science, 2007(2 ) : 972-976.
  • 8Zhou Y, Cheng H, Yu J X.Clustering large attributed graphs: an efficient incremental approach[C]//Proceedings of IEEE International Conference on Data Mining, Sydney,Australia, 2010: 689-698.
  • 9Cheng H, Zhou Y, Yu J X.Clustering large attributed graphs:a balance between structural and attribute similarities[J].ACM Transactions on Knowledge Discovery from Data,2011 (1): 12-44.
  • 10Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html.

共引文献2455

同被引文献35

  • 1周枫.大数据时代档案馆的特征及发展策略[J].档案与建设,2013(8):6-9. 被引量:53
  • 2Flake G W, Tarjan R E, Tsioutsiouliklis K. Graph cluste- ring and minimum cut trees [ J ]. Internet Mathematics, 2003,1 (4) :385-408.
  • 3Beineke L W, Wilson R J. Topics in Algebraic Graph The- ory [ M ]. Cambridge University Press, 2004:276.
  • 4Yang Bo, Cheung W K, Liu Jiming. Community mining from signed social networks [ J ]. IEEE Transactions on Knowledge & Data Engineering, 2007, 19 ( 10 ) : 1333- 1348.
  • 5McDaid A F, Murphy T B, Friel N, et al. Model-based clustering in networks with stochastic community finding [ C]// COMPSTAT 2012 Proceedings. 2012.
  • 6Chen Dongming, Dong Yanlin, Huang Xinyu, et al. A community finding method for weighted dynamic online so- cial network based on user behavior[ J]. International Jour- nal of Distributed Sensor Networks, 2015,2015 : Article No. 97.
  • 7Girvan M, Newman M E J. Community structure in social and biological networks[ J]. Proceedings of the National A- cademy of Sciences, 2002,99(12) :7821-7826.
  • 8Newman M E J. Fast algorithm for detecting community structure in networks [ J ]. Physical Review E, 2004,69 (6) :279-307.
  • 9Xu Xiaowei, Yuruk N, Feng Zhidan, et al. SCAN: A structural clustering algorithm for networks[ C ]//Proceed- ings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2007:824-833.
  • 10Zhao Weizhong, Martha V, Xu Xiaowei. PSCAN: A paral- lel structural clustering algorithm for big networks in Ma- pReduce[ C]//Proceedings of the 27th IEEE International Conference on Advanced Information Networking and Ap- plications (AINA). 2013:862-869.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部