期刊文献+

用强伪压缩映像不动点方法求解线性方程组

The Application of Strong Pseudocontractive Mapping Fixed Point Theorem To Study the System of Linear Equations
下载PDF
导出
摘要 线性方程组理论是研究物资管理及其企业管理数量化的基本数学方法,线性方程组的研究包括解的存在性和计算方法两个方面.应用非线性泛函分析理论中非线性算子来研究线性方程组解的存在性和计算方法,而强伪压缩映像是一重要的非线性算子.应用强伪压缩映像的不动点方法研究线性方程组解的存在性和迭代计算方法,得到了相应的解的存在性定理和解的有效迭代计算方法. The theory of linear equations is the basic mathematic methods to study materials management and business management of quantitative research,including the two aspects o f existence of solutions and calculation methods. The application of the theory of nonlinear functional analysis is to study the existence of nonlinear operator and computational methods and strong pseudo image compression is an important nonlinear operator. The research on the existence of linear equations and iterative computation methods by using the fixed point method of strong pseudo-image compression results in the existence theorem of the corresponding solution and the effective method of iterative computation.
作者 吴月涵
出处 《沧州师范学院学报》 2015年第1期9-14,共6页 Journal of Cangzhou Normal University
关键词 强伪压缩映像 线性方程组 不动点 strong pseudocontractive mapping system of linear equations fixed point
  • 相关文献

参考文献7

  • 1A. Frommer, D. B. Szyld. H-splittings and Two-stage Iterative methods[J]. Numer. Math., 1992, (63) :340-306.
  • 2N. K. Nichols. On the Convergence of Two-stage Iterative Processes for Solving Linear Equations [ J ]. SIAM J. Numer. Anal. , 1973, (10) :460-469.
  • 3E. L. Wachspress. Iterative Solution of Elliptic Systems[ M ]. London: Prentice Hall, 1966.
  • 4G. H. Golub, M. L. Overton. The Covergence of Inexact Chebyshev and Richardson Iterative Methods for Solving linear Systems[J]. Numer. Math., 1988, (53) :571-593.
  • 5R. J. Lanzkron, D. J. Rose, D. B. Szyld. Convergence of Nested Classical Iterative Methods for Linear systems[J]. Numer. Math., 1991, (58) :685-702.
  • 6Zhongzhi Bai, Deren Wang. The Monotone Convergence of the Two-stage Iterative Method for Solving Large Sparse Systems of Linear E- quations[J]. Appl. Math. Latt., 1997, (10) : 113-117.
  • 7K. Deimling. Zeros of Accretive Operators[ J]. Manuscripta Math., 1974, (13) :365-374.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部