期刊文献+

不一致决策表规则获取的粒计算方法 被引量:7

Gr C method of rule acquisition for inconsistent decision table
原文传递
导出
摘要 针对不一致决策表的规则获取,从属性多粒度角度考虑,按粒度由粗到细将决策表划分成不同的粒度空间,通过定义相容粒关系矩阵和不相容粒关系矩阵,并充分挖掘隐含在矩阵中的启发式信息,实现对不同粒度空间确定性规则和不确定性规则的获取.最后,从实例分析以及UCI测试对算法进行验证,并与现有算法进行实验对比,实验结果与分析表明了所提出算法的可行性和有效性,而且按此方法获取的规则集的泛化能力更强. To acquire the rules of inconsistent decision table, the inconsistent decision table is granulated into different granular spaces from fine to coarse in the perspective of attribute multi-granulation. By defining the consistent granular relation matrix and inconsistent granular relation matrix, as well as mining the heuristic information hidden in the matrices, the certain rules and uncertain rules in different granular space are acquired. Finally, the proposed algorithm is illustrated by an example and verified by UCI test set. The experiment comparison with existing algorithms is done to show the feasibility and effectiveness of the proposed algorithm, which also proves that the acquired rules have better generalized ability.
出处 《控制与决策》 EI CSCD 北大核心 2015年第4期709-714,共6页 Control and Decision
基金 国家自然科学基金项目(61402319) 山西省回国留学人员科研项目(2013-031)
关键词 不一致决策表 规则获取 多粒度 粒计算 inconsistent decision table rule acquisition multi-granulation granular computing
  • 相关文献

参考文献14

  • 1Pawlak Z. Rough sets[J]. Int J of Computer and Information Science, 1982, 11(5): 341-356.
  • 2张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18. 被引量:190
  • 3黄兵,周献中.不一致决策表中规则提取的矩阵算法[J].系统工程与电子技术,2005,27(3):441-445. 被引量:12
  • 4An J J, Wang G Y, Wu Y, et al. A rule generation algorithm based on granular computing[C]. Proc of the IEEE Int Conf on Granular Computing. Hong Kong, 2005: 102-107.
  • 5张清华,王国胤,刘显全.基于最大粒的规则获取算法[J].模式识别与人工智能,2012,25(3):388-396. 被引量:23
  • 6Lin T Y. Granular computing: Practices, ries, and future directions[C]. Encyclopedia of Complexity and Systems Science. New York: Springer, 2009: 4339-4355.
  • 7Qian Y H, Liang J Y, Yao Y Y, et al. MGRS: A multi-granulation rough set[J]. Information Sciences, 2010, 180(6): 949-970.
  • 8Qian Y H, Zhang H, Sang Y, et al. Multigranulation decision-theoretic rough sets[J]. Int J of Approximate Reasoning, 2014, 55(1): 225-237.
  • 9Liu X, Qian Y H, Liang J Y. A rule-extraction framework under multigranulation rough sets[J]. Int J of Machine Learning and Cybernetics, 2014, 5(2): 319-326.
  • 10Yang X B, Song X N, Dou H L, et al. Multi-granulation rough set: from crisp to fuzzy case[J]. Annals of Fuzzy Mathematics and Informatics, 2011, 1(1): 55-70.

二级参考文献31

  • 1代建华,潘云鹤.一种基于分类一致性的决策规则获取算法[J].控制与决策,2004,19(10):1086-1090. 被引量:16
  • 2LingZhang,BoZhang.A Quotient Space Approximation Model of Multiresolution Signal Analysis[J].Journal of Computer Science & Technology,2005,20(1):90-94. 被引量:20
  • 3[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 4[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 5[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 6[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 7[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 8[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120
  • 9Guan J W, Bell D A, Guan Z. Matrix computation for information svstems[J]. Information Sciences.2001.131:129 - 156.
  • 10Mi Ju-Sheng, Wu Wei-Zhi, Zhang Wen-Xiu. Approaches to approximation reducts in inconsistent decision Tables [ A ]. Wang G,Rough Set. Fuzzy Sets, Data Mining, and Granular Computing [ C ].2003. 283 - 286.

共引文献232

同被引文献54

  • 1何明,冯博琴,马兆丰,傅向华.一种基于Rough集理论的属性约简启发式算法[J].小型微型计算机系统,2005,26(3):356-359. 被引量:13
  • 2廖建坤,叶东毅.基于免疫粒子群优化的最小属性约简算法[J].计算机应用,2007,27(3):550-552. 被引量:17
  • 3杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 4Pawlak Z. Rough sets[J]. Int J of Computer & Information Sciences, 1982, 11(5): 341-356.
  • 5Yao Y Y, Wong S K M. A decision theoretic framework for approximating concepts[J]. Int J of Man-machine Studies, 1992, 37(6): 793-809.
  • 6Yao Y Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6): 1080-1096.
  • 7Wang G Y, Zhao J, An J J, et al. Theoretical study on attribute reduction of rough set theory: comparison of algebra and information views[C]. Proc of the 3rd IEEE Int Conf on Cognitive Informatics. Victoria: IEEE, 2004: 148-155.
  • 8Guan J W, Bell D A. Rough computational methods for information systems[J]. Artificial Intelligence, 1998, 105(1/2): 7%103.
  • 9Skowron A, Rauszer C. The discernibility matrices and functions in information systems[M]. Intelligent Decision Support. Berlin: Springer Netherlands, 1992: 331-362.
  • 10Zhao Y, Wong S K M, Yao Y Y. A note on attribute reduction in the decision-theoretic rough set model[M]. Transactions on Rough Sets XIII. Berlin: Springer, 2011: 260-275.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部