摘要
针对具有连续解空间的数值函数优化问题,基于量子算法和实数编码进化算法的思想,提出一种新的相位角编码量子进化算法(PAQEA).算法的概率表达特性使得量子染色体能够以一定概率表达优化问题的所有可行解,结合动态量子旋转门实现染色体的进化,实现了算法局部搜索与全局搜索的平衡.理论分析证明了算法的全局收敛性.仿真结果表明,该算法适用于复杂数值函数优化问题,具有收敛速度快、搜索能力强和稳定性高的特点.
In order to optimize the numerical functions with the continuous solution space, a new phase angle encoded quantum evolutionary algorithm(PAQEA) is proposed based on the quantum computing and real encoded evolutionary algorithm. In PAQEA, a quantum chromosome with probabilistic representation can represent all the feasible solution probabilistically, and the dynamic quantum rotation gate is used to update chromosomes. Thus, the population diversity and directional evolution realize a good balance between exploration and exploitation. Theoretical analysis shows that the PAQEA is a global convergence algorithm. Simulation results show that the algorithm is suitable for the optimization of complex numerical functions, and has the characteristics of rapider convergence, powerful global search capability and better stability.
出处
《控制与决策》
EI
CSCD
北大核心
2015年第4期739-744,共6页
Control and Decision
关键词
进化算法
相位角编码
量子进化算法
概率表达
全局收敛
Keywords: evolutionary algorithm phase angle encoded
quantum evolutionary algorithm
probabilistic representation
global convergence