期刊文献+

基于随机匹配的复杂网络最小驱动点集分析 被引量:1

Analysis of minimum driver node set of complex network based on random matching
原文传递
导出
摘要 控制复杂网络在很多领域都有着重要的应用价值.将控制复杂网络所需的最少节点集合称为最小驱动点集.针对网络的最小驱动点集并不唯一,提出一种随机匹配方法来获取网络中不同的最小驱动点集,并分析最小驱动点集集合的平均度分布以及节点在最小驱动点集集合中的出现频率.研究发现,多数网络的最小驱动点集分布紧密,其节点构成与网络度分布有关;同时,网络中节点的控制重要性与其入度密切相关.所得到的相关结论对于复杂网络的控制具有重要的研究意义. Controllability of complex networks has important application value in many areas. The minimum driver node set is defined as the minimum nodes required to the control complex network. However, the minimum driver node set of most of network is not unique. Therefore, a random matching method is proposed to obtain different minimum driver node set of a network. Then, the method analyzes the average degree distribution of the collection of minimum driver node sets, and the frequency appears in the collection of the node. It is found that the minimum driver node sets of most networks are distributed tightly. The composition of a driver node set is closely related with the degree distribution of network. The control importance of the node in a network is closely related to the in-degree of node. These conclusions have important research meaning for the controllability of the complex network.
出处 《控制与决策》 EI CSCD 北大核心 2015年第4期751-754,共4页 Control and Decision
基金 中央高校基本科研业务费项目(N120404011) 国家自然科学基金项目(60093009 61073062 71272216 61100027) 国家科技支撑计划项目(2012BAH08B02)
关键词 复杂网络 结构可控性 最小驱动点集 拓扑分析 complex network structural controllability minimum driver node set topological analysis
  • 相关文献

参考文献15

  • 1Fortunato S. Community detection in graphs[J]. Physics Reports, 2010, 486(3): 75-174.
  • 2Ghoshal G, Barabasi A L. Ranking stability and super stable nodes in complex networks[J]. NatureCommunications, 2011, 2(7): 394.
  • 3Karsai M, Kivela M, Pan R K, et al. Small but slow world: How network topology and burstiness slow down spreading[J]. Physical Review E, 2011, 83(2): 025102.
  • 4Papadopoulos F, Kitsak M, Serrano Md, et al. Popularity versus similarity in growing networks[J]. Nature, 2012, 489(7417): 537-540.
  • 5Barabdsi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
  • 6Watts D J. Networks, dynamics, and the small-world phenomenon[J]. American J of Sociology, 1999, 105(2): 493-527.
  • 7Vespignani A. Modelling dynamical processes in complex socio-technical systems[J]. Nature Physics, 2012, 8(2160): 32-39.
  • 8Stanoev A, Smilkov D, Kocarev L. Identifying communities by influence dynamics in social networks[J]. Physical Review E, 2011, 84(4): 046102.
  • 9Palla G, Barabasi A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
  • 10Liu Y Y, Slotine J J, Barabasi A L. Controllability of complex networks[J]. Nature, 2011,473(7346): 167-173.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部