期刊文献+

一种能量收集嵌入式系统自适应调度算法 被引量:4

Adaptive Scheduling Algorithm for Energy Harvesting Embedded System
下载PDF
导出
摘要 能量收集嵌入式系统(energy harvesting embedded system,简称EHES)的任务调度算法需要考虑能量收集单元的能量输出、能量存储单元的能量水平和能量消耗单元的能耗.实时任务在满足能量约束的条件下,才可能满足时间约束.在这个背景下,传统固定优先级调度算法不再适用于EHES.提出一种基于分组的自适应任务调度算法,它能根据能量收集单元由于能量输出的不确定性而造成的非能量约束情况和能量约束情况,自适应地选择任务调度算法.在非能量约束的情况下,减少任务抢占次数,增强任务的可调度性;在能量约束情况下,减少电池模式切换次数,提高能量存储单元的平均能量水平,从而降低系统能量约束.在一个可进行大范围任务集合仿真的实验环境下对提出的算法进行验证,并将基于分组的自适应调度算法与现有的两个经典算法进行了对比. The task scheduling of energy harvesting embedded systems(EHES) should take into account the energy supply of energy harvesting unit, the energy level of energy storage unit and the energy consumption of energy dissipation unit. A real-time task can meet time constraint only if its energy constraint is satisfied. Against this background, conventional fixed-priority tasks scheduling algorithms are not suitable for EHES. A group-based adaptive task scheduling algorithm is proposed in this paper. It can select suitable task scheduling algorithm adaptively according to the non-energy constraint condition and the energy constraint condition caused by the uncertain energy supply of energy harvesting unit. In the case of non-energy constraints, the algorithm can reduce the tasks preemptions and enhance the tasks schedulability. In the case of energy constraints, the algorithm can reduce the battery-mode switches and increase the average energy level of energy storage unit, thus decrease the system energy constraint. The proposed algorithm is validated with large scale simulations comparing with other two existing classical algorithms.
出处 《软件学报》 EI CSCD 北大核心 2015年第4期819-834,共16页 Journal of Software
基金 国家高技术研究发展计划(863)(2011AA010105)
关键词 能量收集 实时性 嵌入式系统 信息物理融合系统 自适应调度 energy harvesting real-time embedded system cyber-physical system adaptive scheduling
  • 相关文献

参考文献2

二级参考文献52

  • 1Lee E. Computing Foundations and Practice for Cyber-Physical Systems: a Preliminary Report, Technical Report UCB/EECS-2007-72, University of California, USA, 2007.
  • 2Baheti R, Gill H. Cyber-physical systems. The Impact of Control Technology. Washington D.C., USA: IEEE, 2011. 161-166.
  • 3CPS Steering Group. Cyber-physical systems executive summary [Online], available: http://precise.seas. upenn.edu/events/iccps11/_doc/CPS-Executive-Summary. pdf, June 4, 2011.
  • 4Lin J, Sedigh S, Miller A. A general framework for quantitative modeling of dependability in cyber-physical systems: a proposal for doctoral research. In: Proceedings of the 33rd Annual IEEE International Computer Software and Applications Conference. Seattle, USA: IEEE, 2009. 668-671.
  • 5Sastry S S. Networked embedded systems: from sensor webs to cyber-physical systems. In: Proceedings of the 10th International Conference on Hybrid Systems: Computation and Control. Berlin, Germany: Springer, 2007. 1-1.
  • 6Branicky M. CPS initiative overview. In: Proceedings of the IEEE/RSJ International Conference on Robotics and Cyber-Physical Systems. Washington D.C., USA: IEEE, 2008.
  • 7Krogh B, Ilic M D, Sastry S S. Networked Embedded Control for Cyber-Physical Systems: Research Strategies and Roadmap, Technical Report, Team for Research in Ubitquitous Secure Technology, USA, 2007.
  • 8马文方. CPS:从感知网到感控网. 中国计算机报, 2010, 25.
  • 9Rajkumar R, Insup L, Lui S, Stankovic J. Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th ACM/IEEE Design Automation Conference. California, USA: IEEE, 2010. 731-736.
  • 10Ilic M D, Xie L, Khan U A, Moura J M F. Modeling future cyber-physical energy systems. In: Proceedings of the IEEE Power Engineering Society General Meeting. Pittsburgh, USA: IEEE, 2008. 1-9.

共引文献272

同被引文献52

  • 1刘立安,戴淑青.临床电针疗法[M].北京:中国医药科技出版社,2011:10-13.
  • 2Allavena A, Mosse D. Scheduling of frame-based embedded systems with rechargeable batteries [C/OL] //Proc of Workshop on Power Management for Real-Time and Embedded Systems (in Conjunction With RTAS 2001). 2001 [2015-08-01]. http://igm, univ-rrdv. fr/-masson/pdfANDps/ allavena_mosse 01. pdf.
  • 3Banerjee A, Venkatasubramaniae K K, Mukherjee T, et al. Ensuring safety, security, and sustainability of mission critical cyber-physical systems [J]. Cyber-Physical Systems, 2012, 100(1): 283-29.
  • 4Zhang F, Szwaykowska K, Wolf W, et al. Task scheduling for control oriented requirements for cyber physical systems [C] //Proc of the 29th Real-Time Systems Symp. Piscataway, NJ: IEEE, 2008:417-56.
  • 5Luo J, Jha N K. Power efficient scheduling for heterogeneous distributed real time embedded systems [J]. IEEE Trans on Compute:Aided Design of Integrated Circuits and Systems, 2007, 26(6), 1161-1170.
  • 6Jiang Wei, Xiong Guangze, Ding Xuyang. Energy-saving service scheduling for low-end cyber physical systems [C] // Proc of the 9th Int Conf for "Young Computer Scientists (ICYCS'08). Piscataway, NJ: IEEE, 2008:1064-1069.
  • 7Chandarli Y, Abdeddaim Y, Masson D. The fixed priority scheduling problem for energy harvesting real-time systems [C] //Proc of the 18th Int Conf on Embedded and Real-Time Computing Systems and Applications ( RTCSA ). Piscataway, NJ: IEEE, 2012:415-418.
  • 8Abdeddaim Y, Chandarli Y, Masson D. Toward an optimal fixed priority algorithm for energy harvesting real-time systems [C/OL] //Proc of the Work in Progress Session of 19th IEEE Real Time and Embedded Technology and Applications Syrup. 2013: 45-48. [2015-08-01]. https:// hal. archives-ouvertes, fr/hal 00796646/document.
  • 9Abdeddafm Y, Chandarli Y, Masson D. The optimality of PFPasap algorithm for fixed-priority energy-harvesting real time systems [C] //Proc of the 25th Euromieroc Conf on Real Time Systems (ECRTS). Piscataway, NJ: IEEE, 2013:47-56.
  • 10Tsafrir D. The context switch o:erhead inflicted by hardware interrupts (and the enigma of do-nothing loops)[C] //Proc of the 2007 Workshop on Experimental Computer Science. New York: ACM, 2007:4-17.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部