期刊文献+

基于结构分析的信息网络社团趋势预测 被引量:5

Information Networks Community Trend Prediction Based on Structure Analysis
下载PDF
导出
摘要 社团结构在现实世界各种信息网络中广泛存在。传统信息网络中社团演化的研究均基于单一层次的观察与分析,存在算法不稳定,无法处理社团结构剧烈变化等问题。为解决该问题,提出了基于结构分析的信息网络社团趋势预测方法。该方法基于层次聚类来发现社团层次结构,对相邻网络快照的社团进行跨层次匹配,以解决社团发现算法带来的随机性问题,且使基于结构的社团演化研究成为可能。在两个真实数据集上进行了多层次社团演化挖掘实验,实验结果表明,与最优划分方法相比,新方法在效率和稳定性方面有较大优势。 Community structure is an important feature that exists extensively in real-world complex networks. Tradi- tional community evolution studies are limited to the analysis on single-level communities, and have some defects, such as the evolutionary regularities revealing and algorithms stability, etc. To handle the problems, this paper pro- poses an information networks community trend prediction method based on structure analysis. The method obtains community hierarchies by hierarchical clustering, matches communities with different structures in adjacent network snapshots, therefore relatively overcomes the difficulty of overlooking the influence of sudden outside events, and provides possibility for the structure based community evolution analysis. The method is applied in two real-world datasets, and the experimental results show that the work in stability. this paper greatly improves the algorithm efficiency and stability.
出处 《计算机科学与探索》 CSCD 北大核心 2015年第4期403-409,共7页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Grant No.61103043 国家"十二五"科技支撑计划项目Grant No.2012BAG04B02 武汉大学软件工程国家重点实验室开放基金项目Grant No.SKLSE2012-09-26~~
关键词 信息网络 社团演化 层次聚类 information networks community evolution hierarchical clustering
  • 相关文献

参考文献19

  • 1Han Jiawei, Sun Yizhou, Yan Xifeng, et al. Mining knowledge fi'om databases: an information network analysis approach[C]// Proceedings of the 2010 International Conference on Man- agement of Data, Indianapolis, USA, Jun 6-11, 2010. New York, NY, USA: ACM, 2010: 1251-1252.
  • 2Sun Yizhou, Tang Jie, Han Jiawei, et al. Community evolution detection in dynamic heterogeneous information networks[C]// Proceedings of the 8th Workshop on Mining and Learning with Graohs. New York, NY, USA: ACM. 2010: 137-146.
  • 3Gao Jing, Liang Feng, Fan Wei, et al. On community outliers and their efficient detection in information networks[C]// Proceedings of the 16th ACM SIGKDD International Con- ference on Knowledge Discovery and Data Mining, Wash- ington, USA, Jul 25-28, 2010. New York, NY, USA: ACM, 2010: 813-822.
  • 4Fortunato S. Community detection in graphs[J]. Physics Reports, 2010, 486(3): 75-174.
  • 5Holme P, Sarami J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125.
  • 6Aynaud T, Fleury E, Guillaume J L, et al. Communities in evolving networks: definitions, detection, and analysis tech- niques[M]//Dynamics on and of Complex Networks, Vol- ume 2. New York: Springer, 2013: 159-200.
  • 7Palla G, Barabisi A L, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
  • 8Toyoda M, Kitsuregawa M. Extracting evolution of Web com- munities from a series of Web archives[C]//Proceedings of the 14th ACM Conference on Hypertext and Hypermedia, Nottingham, UK, Aug 26-30, 2003. New York, NY, USA: ACM, 2003: 28-37.
  • 9Falkowski T, Bartelheimer J, Spiliopoulou M. Mining and visualizing the evolution of subgroups in social networks[C]// Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, Hong Kong, China, Dec 18-22, 2006. Piscataway, NJ, USA: IEEE, 2006: 52-58.
  • 10Ferlez J, Faloutsos C, Leskovec J, et al. Monitoring network evolution using MDL[C]//Proceedings of the 24th IEEE Inter- national Conference on Data Engineering, CancOn, Mrxico, Apr 7-12, 2008. Piscataway, NJ, USA: IEEE, 2008: 1328-1330.

同被引文献50

  • 1邓波,张玉超,金松昌,林旺群.基于MapReduce并行架构的大数据社会网络社团挖掘方法[J].计算机研究与发展,2013,50(S2):187-195. 被引量:10
  • 2唐磊,刘欢.社会计算:社区发现和社会媒体挖掘[M].北京:机械工业出版社,2012:36-56.
  • 3C Li,WK Cheung,etc. The Author-Topic-Community Model for Author Interest Profiling and Community Discovery[J]. Knowledge & Information Systems, 2014,44:1-25.
  • 4M Sachan, D Contractor,etc. Probabilistic Model for Discovering Topic Based Communities in Social Networks[C]. ACM International Conference on Information & Knowledge Management,2011:2349-2352.
  • 5Y Sun,Y Yu,etc. Ranking-Based Clustering of Heterogeneous Information Networks with Star Network Schema[C]. In KDD'04, 2009: 797-806.
  • 6D Zhou,E Manavoglu,etc. Probabilistic Models for Discovering E-communities[C]. International Conference on World Wide Web, 2006:173-182.
  • 7C. Bishop. Pattern Recognition and Machine Learning[M]. Springer, 2007.
  • 8Dirichlet Distribution. http://en.wikipedia.org/wiki/dirichletdistribution.
  • 9D. Blei, A. Ng,etc. Latent Dirichlet Allocation[J]. JMLR, 2003:993-1022.
  • 10D Koller, N Friedman. Probabilistic Graphical Models: Principles and Techniques[M]. MIT Press, 2009,42 (2): 161-168.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部