摘要
首先建立一个具有饱和接触率的SIQRS模型,通过计算得到阈值R0的表达式;然后对阈值R0进行讨论;接着利用稳定性定理和Dulac定理得到无病平衡点和地方病平衡点的存在性和全局稳定性;最后通过计算机仿真验证了该结果的正确性。
First,this paper constructed a SIQRS epidemic model with saturated contact rate. We got the threshold R0 by calculating,in which there exists a disease-free equilibrium point and an endemic equilibrium point by stability theorem and Dulac Theorem,at last,the computer numerical value simulation implies that the conclusion is right.
出处
《重庆理工大学学报(自然科学)》
CAS
2015年第3期141-145,共5页
Journal of Chongqing University of Technology:Natural Science
基金
重庆市自然科学基金资助项目(2005BB8085)
重庆市教育委员会基金资助项目(KJ080622)