期刊文献+

云计算环境下利用工作流引擎的并行策略性能评估研究

The Research of Performance Evaluation of Parallel Strategies by Using Workflow Engine in Cloud Computing Environment
下载PDF
导出
摘要 针对很少有方法对云中系统发育基因组学分析工作流程的并行性进行评估的问题,提出了一种适用于真实云环境中SciPhylomics执行的性能评估工作流程。呈现了SciCumulus云工作流引擎,在亚马逊EC2云上,使用两种并行执行方法(SciCumulus和Hadoop)实施该工作流程。实验结果表明,尽管系统发育基因组学实验对计算环境要求严格,但此类实验仍然适合在云中执行。所评估的工作流程呈现了几组数据密集型工作流程的许多特征,实验结果表明,这些云执行结果可以扩展到其他实验类型。 There is no previous approach that evaluates the performance of parallel execution of phylogenomic tree produced by each analysis executed. To solve this problem, a performance evaluation for SciPhylomics executions in a real cloud environment is pro-posed. The SciCumulus workflow engine is explained. The workflow is executed by using two parallel execution approaches (Sci-Cumulus and Hadoop) at the Amazon EC2 cloud. The experiment results demonstrate that this class of bioinformatics experiment is suitable to be executed in the cloud despite its need for high performance capabilities. The evaluated workflow shows many features of several data intensive workflows, which present that these cloud execution results can be extended to other classes of experiments.
出处 《微型电脑应用》 2015年第3期12-17,共6页 Microcomputer Applications
基金 国家自然科学基金资助项目(No.U1204611) 河南省科技厅科技发展计划项目(No.134300510037) 平顶山学院青年科研基金项目(No.PDSU-QNJJ-2013010)
关键词 云计算环境 系统工作流 并行策略 SciCumulus云 HADOOP Hadoop Cloud Computing Environment System Workflow Parallel Strategies SciCumulus Cloud Hadoop
  • 相关文献

参考文献15

  • 1Tablan V, Roberts I, Cunningham H, et al. GATECloud. net: a platform for large-scale, open-source text processing on the cloud [J]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2013, 37 (19): 2071-2096.
  • 2李乔,郑啸.云计算研究现状综述[J].计算机科学,2011,38(4):32-37. 被引量:433
  • 3秦秀磊,张文博,魏峻,王伟,钟华,黄涛.云计算环境下分布式缓存技术的现状与挑战[J].软件学报,2013,24(1):50-66. 被引量:75
  • 4雷万云.云计算:技术、平台及应用案例[M].北京:清华大学出版社.2011.
  • 5Mateescu G, Gentzsch W, Ribbens C J. Hybrid compu- ting-where HPC meets grid and cloud computing [J]. Future Generation Computer Systems, 2011, 27(5): 440-453.
  • 6Hartman A L, Riddle S, McPhillips T, et al. Introducing WATERS: a workflow for the alignment, taxonomy, and ecology of ribosomal sequences [J]. BMC bioinformatics, 2010, 11(1): 317-327.
  • 7Wu M, Scott A J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2 [J]. Bioinformatics, 2012, 28(7): 1033-1034.
  • 8Lord E, Leclercq M, Boc A, et al. Armadillo 1.1: an orig- inal workflow platform for designing and conducting phylogenetic analysis and simulations [J]. PloS one, 2012, 7(1): 456-473.
  • 9Moustafa A, Bhattacharya D, Allen A E. iTree: A high-throughput phylogenomic pipeline[C]. Biomedical Engineering Conference (CIBEC), 2010 5th Cairo Inter- national. IEEE, 2010, 23(5): 103-107.
  • 10柴学智,曹健.面向云计算的工作流技术[J].小型微型计算机系统,2012,33(1):90-95. 被引量:37

二级参考文献150

  • 1杜晓丽,蒋昌俊,徐国荣,丁志军.一种基于模糊聚类的网格DAG任务图调度算法[J].软件学报,2006,17(11):2277-2288. 被引量:48
  • 2王勇,胡春明,杜宗霞.服务质量感知的网格工作流调度[J].软件学报,2006,17(11):2341-2351. 被引量:60
  • 3林伟伟,齐德昱,李拥军,王振宇,张志立.树型网格计算环境下的独立任务调度[J].软件学报,2006,17(11):2352-2361. 被引量:29
  • 4DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters [ J] // Communications of the ACM: 50th anniversary issue, 2008, 51(1): 107-113.
  • 5Apache Hadoop. Hadoop[ EB/OL]. [2011-03- 15]. http://hadoop. apache, org.
  • 6CHU C-T, KIM S K, LIN Y-A, et al. Map-reduce for machine learning on multicore[ C]// NIPS 2006: Proceedings of Neural Information Processing Systems Conference. Cambridge, MA: MIT, 2006:281-288.
  • 7JASON D, LAWRENCE S, JAIME T, et al. Tracking the poor assumptions of Naive Bayes text classifiers[ C]// ICML 2003: Proceedings of the Twenty International Conference on Machine Learning. Washington, DC: [s. n. ], 2003:616-693.
  • 8中国科学院计算技术研究所.ICTCLAS汉语分词系统【EB/OL】.[2011-02—16】.http://ictclas.org/.
  • 9University of Waikato. Weka 3: data mining software in Java [ EB/ OL]. [2011 -03 - 15]. http://www, cs. waikato, ac. nz/ml/weka/.
  • 10WEGENER D, MOCK M, ADRANALE D, et al. Toolkit-based high-performance data mining of large data on MapReduce clusters [ C]// ICDM: IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2009:296 -301.

共引文献602

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部