期刊文献+

Sharp Inequalities for BMO Functions

Sharp Inequalities for BMO Functions
原文传递
导出
摘要 The purpose of the paper is to study sharp weak-type bounds for functions of bounded mean oscillation. Let 0 〈 p 〈 ∞ be a fixed number and let I be an interval contained in R. The author shows that for any φ : I → R and any subset E I of positive measure, |I|^-1/p/|E|1-1/p∫E|φ -1/|I|∫Iφdy|dx≤||φ||BMO(I),0〈p≤2,|I|^-1/p/|E|1-1/p∫E|φ -1/|I|∫Iφdy|dx≤p/2^2/pe2/p-1||φ||BMO(I)p≥2. For each p, the constant on the right-hand side is the best possible. The proof rests on the explicit evaluation of the associated Bellman function. The result is a complement of the earlier works of Slavin, Vasyunin and Volberg concerning weak-type, L ^p and exponential bounds for the BMO class.
机构地区 Faculty of Mathematics
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第2期225-236,共12页 数学年刊(B辑英文版)
基金 supported by the NCN grant DEC-2012/05/B/ST1/00412
关键词 BMO Bellman function Weak-type inequality Best constants BMO函数 不等式 夏普 电子商务 弱型 平均 子集
  • 相关文献

参考文献20

  • 1Bellman, R., Dynamic programming, Princeton University Press, Princeton, 2010.
  • 2Burkholder, D. L., Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab., 12, 1984, 647-702.
  • 3Burkholder, D. L., Explorations in martingale theory and its applications, I cole d'Ete de Probabilit s de Saint-Flour XIX 1989, 1 66, Lecture Notes in Math., 1464, Springer-Verlag, Berlin, 1991.
  • 4Fefferman, C., Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc., 77, 1971, 587-588.
  • 5Grafakos, L., Classical and Modern Fourier Analysis, Pearson Education, Inc. New Jersey, 2004.
  • 6Ivanishvili, P., Osipov, N., Stolyarov, D., et al., On Bellman function for extremal problems in BMO, C. R. Math. Acad. Sci. Paris, 350, 2012, 561-564.
  • 7Ivanishvili, P., Osipov, N., Stolyarov, D., et al., Bellman functions for the extremal problems on BMO (in Russian), http://www.pdmi.ras.ru/preprint/2011/rus-2011.html.
  • 8John, F. and Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure and Appl. Math., 14, 1961, 415-426.
  • 9Korenovskii, A., The connection between mean oscillations and exact exponents of summability of func- tions, Math. USSR-Sb., 7"1(2), 1992, 561-567.
  • 10Melas, A. D., The Beliman functions of dyadic-like maximal operators and related inequalities, Adv. Math., 192, 2005, 310-340.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部