期刊文献+

The Uniqueness of Inverse Problem for the Dirac Operators with Partial Information

The Uniqueness of Inverse Problem for the Dirac Operators with Partial Information
原文传递
导出
摘要 The inverse spectral problem for the Dirac operators defined on the interval[0, π] with self-adjoint separated boundary conditions is considered. Some uniqueness results are obtained, which imply that the pair of potentials(p(x), r(x)) and a boundary condition are uniquely determined even if only partial information is given on(p(x), r(x))together with partial information on the spectral data, consisting of either one full spectrum and a subset of norming constants, or a subset of pairs of eigenvalues and the corresponding norming constants. Moreover, the authors are also concerned with the situation where both p(x) and r(x) are C n-smoothness at some given point.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第2期253-266,共14页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11171198) the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.2013JK0563)
关键词 EIGENVALUE Norming constant Boundary condition Inverse spectral problem 部分信息 狄拉克 反问题 边界条件 光谱数据 子集和 运营商 谱问题
  • 相关文献

参考文献18

  • 1Levitan, B. M. and Sargsjan, I. S., Sturm=Liouville and Dirac operators, Nauka, Moscow, 1988.
  • 2Horv th, M., On the inverse spectral theory of SchrSdinger and Dirac operators, Amer. Math. Soc. Transl., 353(10), 2001, 4155-4171.
  • 3Amour, L., Extension on isospectral sets for AKNS system, Inverse problem, 12(2), 1996, 115-120.
  • 4Hochstadt, H. and Lieberman, B, An inverse Sturm-Liouviile problem with mixed given data, SIAM J. Appl. Math., 34(4), 1978, 676-680.
  • 5delrio, R. and Gr@bert, B., Inverse spectral results for AKNS systems with partial information on the potentials, Math. Phys. Anal. Geom., 4(3), 2001, 229-244.
  • 6Gesztesy, F. and Simon, B., Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, Trans. Amer. Math. Soc., 352(6), 2000, 2765-2787.
  • 7Wei, G. S. and Xu, H. K., Inverse spectral problem with partial information given on the potential and norming constants, Amer. Math. Soc. Transl., 364(6), 2012, 3266-3288.
  • 8Marchenko, V. A., Some questions in the theory of one-dimensional linear differential operators of the second order, Trudy Moskov. Mat. Obshch., 1, 1952, 327-420 (in Russian).
  • 9Marchenko, V. A., Sturm-Liouville Operators and Applications, Birkhauser, Basel, 1986.
  • 10Clark, S. and Gesztesy, F., Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace for- mulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soe., 354(9), 2002, 3475-3534.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部