摘要
D是由复平面z中一条Jordal闭曲线Γ围成的单连区域,z=0∈D.函数u(z)在D内调和且在Γ上u(q)∈L中α(0<α<1).基于复插值逼近理论证明了:存在唯一的调和插值多项式u_n~*(z),它与调和函数u(z)在Γ的摄动Fejer点{z_k~*}_0^(n-1)上有相同的值,在D上一致收敛于u(z),且收敛是稳定的.所得结果改进并推广了同类课题中已有的工作.
Let D be a simply connected domain in the complex z-plane bounded by a closed Jordan curve Γ,z = 0 ∈ D,and let the function u(z) be harmonic in D with u^((q)) G Lip α(0 α 1) on Γ.Based on the theory of complex approximation by interpolation,it is proved that there exists a unique harmonic interpolation polynomial u_n~*(z) which coincides with u(z) at disturbed Fejer points {z_k~*}_0^(n-1) on T,and uniformly approximates to u(z) on D.The convergence is stable.The results obtained have improved or extended earlier similar works on this topic.
出处
《数学年刊(A辑)》
CSCD
北大核心
2015年第1期1-12,共12页
Chinese Annals of Mathematics
基金
河南省自然科学基金(No.20001110001)的资助
关键词
调和函数
调和插值多项式
一致逼近
存在性
唯一性
稳定性
Harmonic functions
Harmonic interpolatory polynomials
Uniform approximation
Existence
Uniqueness
Stability