期刊文献+

一类特定的AF-代数

One Certain Class of AF-Algebras
下载PDF
导出
摘要 讨论了一类特定的AF-代数,其上的恒等同态可以用一列有限维值域的自同态逐点逼近.给出了这类AF-代数的K-理论刻画,并给出了一个不在这一类中的RFD AF-代数的例子. In this paper,a certain class of AF-algebras is discussed in which the identity morphism can be pointwise approximated by a sequence of endomorphisms with finite dimensional range.The author gives a K-theoretical characterization of this kind of AF-algebras,and gives an example which is an RFD AF-algebra but not in this class.
作者 张一凡
出处 《数学年刊(A辑)》 CSCD 北大核心 2015年第1期21-30,共10页 Chinese Annals of Mathematics
基金 厦门理工学院引进人才项目(No.YKJ10017R)的资助
关键词 AF-代数 有限维值域 K-理论 RFD C~*-代数 AF-Algebras Finite dimensional range K-Theory RFD C*-algebras
  • 相关文献

参考文献13

  • 1Bratteli O. Inductive limits of finite-dimensional C*-algebras [J]. Trans Amer Math Soc, 1972, 171:195-234.
  • 2Elliott G A. On the classification of inductive limits of sequences of semisimple finite- dimensional algebras [J]. J Algebra, 1976, 38:29-44.
  • 3Rcrdam M, Stcrmer E. Classification of nuclear C*-algebras, Entropy in operator algebras [M]//Encyclopaedia of mathematical sciences, Vol 126, Berlin, Heidelberg: Springer-Verlag, 2002.
  • 4Lin H. Simple nuclear C*-algebras of tracial topological rank one [J]. J Funct Anal, 2007, 251:601-679.
  • 5Dadarlat M. Approximately unitarily equivalent morphisms and inductive limit C*- algebras [J]. K-Theory, 1995, 9:117-137.
  • 6Gong G, Lin H. Classification of homomorphisms from C(X) to simple C*-algebras of real rank zero [J]. Acta Math Sin (English Series), 2000, 16:181-206.
  • 7Lin H. Classification of homomorphisms and dynamical systems [J]. Trans Amer Math Soc, 2007, 359(2):859-895.
  • 8Lin H. An introduction to the classification of amenable C*-algebras [M]. New Jersey, London, Singapore, Hong Kong, Bangalore: World Scientific, 2001.
  • 9Hu S, Lin H, Xue Y. Limits of homomorphisms with finite-dimensional range [J]. Inter J Math, 2005, 16(7):807-821.
  • 10Liu J P, Zhang Y F. Approximated by finite-dimensional homomorphisms into simple C*-algebras with tracial rank one [J]. Proc Amer Math Soc, 2014, 142:3941 3952.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部