摘要
借助熊庆来的无限级,将Nevanlinna建立的有限级整函数在角域内的取值和增长性的结果推广到无限级.作为应用,研究了高阶超越整函数系数微分方程f^((k))+A_k-2(z)f^((k-2))+…+A_1(x)f'+A_0(z)f=0解的径向振荡.
By using Hiong's infinite order,the author extends a classical result due to Nevanlinna on the growth and values of the finite order entire function in an angular domain to the infinite order.As an application,the radial oscillation of the solutions of the higher order homogeneous linear differential equation f^((k))+A_(k-2)(z)f^((k-2))+…+A_1(z)f'+ A_0(z)f = 0with transcendental entire function coefficients is studied.
出处
《数学年刊(A辑)》
CSCD
北大核心
2015年第1期81-90,共10页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11201395)的资助
关键词
熊氏无限级
径向振荡
值分布
Hiong's infinite order
Radial oscillation
Value distribution