期刊文献+

关于有限群子群的弱S-可补性 被引量:2

The Weakly s-Supplemented Property of Finite Groups
下载PDF
导出
摘要 设G是一个有限群,H是G的一个子群.称H为G的一个s-置换子群,若对于G的任意Sylow子群P,成立HP=PH.称H为G的一个弱s-可补的子群.若存在G的一个子群T,使得G=HT且H∩T≤H_s G,其中H_s G是包含在H中的G的最大的s-置换子群.本文在假设G的某些子群是弱s-可补的前提下,得到了G的一个结构定理,并推广了许多近期的结果. Suppose that G is a finite group and H is a subgroup of G.H is said to be s-permutable in G if HP = PH for any Sylow subgroup P of G.H is said to be weakly s-supplemented in G if there is a subgroup T of G,such that G = HT and H ∩ T ≤ H_s G,where H_b g is the biggest s-permutable subgroup of G contained in H.In this paper,a structural theorem of finite groups is given under the hypothesis that some subgroups of G are weakly s-supplemented subgroups of G.Many recent results are extended.
出处 《数学年刊(A辑)》 CSCD 北大核心 2015年第1期91-102,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11401597 No.11171353 No.11271085) 广东省自然科学基金(No.S2011010004447) 广东省高校学科建设专项项目(No.2012KJCX0081)的资助
关键词 弱s-可补子群 P-幂零群 u-超中心 p-可解群的p-长 Weakly s-supplemented subgroup p-Nilpotent group UHypercenter p-Length of a p-solvable group
  • 相关文献

参考文献18

  • 1Huppert B. Endliche gruppen I [M]. Berlin-Heidelberg-New York: Springer-Verlag, 1967.
  • 2Kegel O H. Sylow-gruppen und subnormalteiler endlicher gruppen [J]. Math Z, 1962, 78:205-221.
  • 3Wang Y. C-normality of groups and its properties [J]. J Algebra, 1996, 180:954-965.
  • 4Ballester-Bolinches A, Wang Y, Guo X. C-supplemented subgroups of finite groups [J]. Glasgow Math J, 2000, 42:383-389.
  • 5Skiba A N. On weakly s-permutable subgroups of finite groups [J]. J Algebra, 2007, 315:192-209.
  • 6Asaad M. Finite groups with certain subgroups of Sylow subgroups complemented [J]. J Algebra, 2010, 323:1958-1965.
  • 7Asaad M. On c-supplemented subgroups of finite groups [J]. J Algebra, 2012, 362:1-11.
  • 8Ballester-Bolinches A, Guo X. On complemented subgroups of finite groups [J]. Arch Math, 1999, 72:161-166.
  • 9Hall P. Complemented groups [J]. J London Math Soc, 1937, 12:201-204.
  • 10Li Y, Su N, Wang Y. Complemented subgroups and the structure of of finite groups [J]. Monat Math, 2014, 173(3):361-370.

二级参考文献2

共引文献6

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部