期刊文献+

基于3DCT与CBCT勾画的胸中下段食管癌内在大体肿瘤靶区的比较

Comparison of internal gross target volume in thoracic middle and lower segment esophageal cancer based on 3DCT and CBCT
下载PDF
导出
摘要 目的比较基于三维CT(3DCT)和锥形束CT(CBCT)图像定义的胸中下段食管癌内在大体肿瘤靶区即内靶区的体积(IGTV)及匹配度。方法 15例胸中下段食管癌患者,首先完成胸部3DCT扫描,基于3DCT制定放疗计划,在3DCT上勾画得到GTV3D,依据山东省肿瘤医院通过四维CT(4DCT)图像测得的胸中下段食管癌靶区运动范围95%可信区间上限外扩得到IGTV,胸中下段食管癌GTV头脚、前后、左右方向分别外扩6.0、3.0、3.0 mm得到IGTV3D,放疗治疗前5次拍摄CBCT,并基于骨性标志配准校正,在CBCT图像上勾画得到IGTVCBCT。比较IGTV3D与IGTVCBCT靶区间体积及匹配度。结果 IGTV3D大于IGTVCBCT(t=2.531,P=0.018),IGTV3D与IGTVCBCT总匹配指数为(0.604±0.0430),亚组胸中段食管癌IGTV3D与IGTVCBCT匹配指数为(0.611±0.0371),胸下段食管癌IGTV3D与IGTVCBCT匹配指数为(0.562±0.0168),胸中段与胸下段食管癌IGTV3D与IGTVCBCT匹配指数比较,差异具有统计学意义(t=2.478,P=0.028)。结论在胸中下段食管癌的放疗中IGTV3DCT明显大于IGTVCBCT,两靶区的匹配指数为(0.604±0.0430),IGTV3DCT不能有效的包含IGTVCBCT,即使3DCT与CBCT配准校正后,也有可能导致较严重的脱靶,放疗期间利用CBCT图像不能提供可靠有效的在线校正。 Objective To compare the volume and matching index(MI) of internal gross target volume(IGTV) in thoracic middle and lower segment esophageal cancer based on three-dimensional CT(3DCT) and cone beam CT(CBCT). Methods There were 15 patients with thoracic middle and lower segment esophageal cancer. Firstly, they received chest 3DCT scan. On the basis of their 3DCT results, radiotherapy scheme was formulated, and IGTV3 DCT was delineated. Their IGTV was gained from external expansion of 95% confidence interval in thoracic middle and lower segment esophageal cancer target volume motion range by four-dimensional CT(4DCT) in Shandong province tumor hospital. The external expansions in GTV head-foot, front-back, leftright direction were 6.0, 3.0, and 3.0 mm respectively, and IGTV3 DCT could be showed from them. CBCT was taken in the first five times of radiotherapy treatment, and it was adjusted by bone landmarks. IGTVCBCT was delineated from CBCT image. Target volumes and matching indexes were compared between IGTV3 DCT and IGTVCBCT. Results The volume of IGTV3 DCT was higher than that of IGTVCBCT(t=2.531, P=0.018). The total matching index of IGTV3 DCT and IGTVCBCT was(0.604±0.0430). The matching index of IGTV3 DCT and IGTVCBCT in subgroup of thoracic middle segment esophageal cancer was(0.611±0.0371), and that of IGTV3 DCT and IGTVCBCT in thoracic lower segment esophageal cancer was(0.562±0.0168). Difference of matching index of IGTV3 DCT and IGTVCBCT between thoracic middle and lower segment esophageal cancer had statistical significance(t=2.478, P=0.028). Conclusion In the radiotherapy for thoracic middle and lower segment esophageal cancer, IGTV3 DCT is obviously higher than IGTVCBCT, and their matching index was(0.604±0.0430). Therefore, IGTV3 DCT cannot effectively contain IGTVCBCT. Even through registration correction of 3DCT and CBCT, possibility of severe offtarget still exists. CBCT image cannot provide reliable online correction in radiotherapy.
出处 《中国实用医药》 2015年第6期3-5,共3页 China Practical Medicine
关键词 食管癌 三维CT 锥形束CT 内在大体肿瘤靶区 匹配度 Esophageal cancer Three-dimensional CT Cone beam CT Internal gross target volume Matching index
  • 相关文献

参考文献8

  • 1Hashimoto T, Shirato H, Kato M, et al. Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys, 2005, 61(5): 1559-1564.
  • 2李奉祥,李建彬,张英杰,于金明.四维影像在肿瘤放射治疗中的应用[J].中华肿瘤杂志,2011,33(10):721-725. 被引量:22
  • 3Wang Z, Wu Q J, Marks LB, et al. Cone-beam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions. Int J Radiat Oncol Biol Phys, 2007, 69(5):1618-1624.
  • 4Ezhil M, Vedam S, Baiter P, et al. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Radiat Oncol, 2009(4): 1-14.
  • 5Harris EJ, Donovan EM, Yarnold JR, et al. Characterization of target volume changes during breast radiotherapy using implanted fiducial markers and portal imaging. Int J Radiat Oncol Biol Phys, 2009, 73(3):958-966.
  • 6Hawkins MA, Brook.s C, Hansen VN, et al. Cone beam computed tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer. Int J Radiat Oncol Biol Phys, 2010, 77(2):378- 383.
  • 7I-Ian C, Schiffner DC, Schuhheiss TE, et al. Residual setup errors and dose variations with less-than-daily image guided patient setup in external beam radiotherapy for esophageal cancer. Radiother Oncol, 2012, 102(2):309-314.
  • 8Schiffner DC, Schulheiss TE, Chen YJ, et al. Can less-than-daily Image guided radiation therapy (IGRT) be used to treat esophageal cancer A study of patient positioning errors and their dosimetric consequences. Int J Radiat Oneol Biol Phys, 2008, 72(1):537-538.

二级参考文献25

  • 1Li G, Citrin D, Camphansen K, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat, 2008, 7:67-81.
  • 2Giraud P, Yorke E, Jiang S, et al. Reduction of organ motion effects in IMRT and conformal 3D radiation delivery by using gating and tracking techniques. Cancer Radiother, 2006, 10:269 - 282.
  • 3Evans PM. Anatomical imaging for radiotherapy. Phys Med Biol, 2008, 53 : R151-191.
  • 4Jaffray D, Kupelian P, Djemil T, et al. Review of image-guided radiation therapy. Expert Rev Anticancer Ther, 2007, 7:89-103.
  • 5Weiss E, Wijesooriya K, Dill SV, et al. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D-CT. Int Radiat Oncol Biol Phys, 2007, 67:296-307.
  • 6Liu HH, Baiter P, Tutt T, et ai. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys, 2007, 68:531-540.
  • 7Kim YS, Park SH, Ahn SD, et al. Differences in abdominal organ movement between supine and prone positions measured using four- dimensional computed tomography. Radiother Oncol, 2007, 85 : 424-428.
  • 8Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real- time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 2002, 53:822-834.
  • 9Underberg RWM, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys, 2005, 63 : 253-260.
  • 10Rietzel E, Liu AK, Chen GT, et al. Maximum-intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oneol Biol Phys, 2008, 71:1245- 1252.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部