期刊文献+

腔光机械谐振器的动力学耗散冷却(英文)

Dynamical Dissipative Cooling of a Cavity Opto-Mechanical Oscillator
下载PDF
导出
摘要 基于光机械耦合系统,详细研究了该系统的动力学冷却问题,比较了强耦合系统中不同的光学腔模型耗散率对平均声子数的影响.在一定的范围内,腔耗散率越大,平均声子数越小,并且有更大的腔耗散率,平均声子数才能快速地达到瞬态冷却极限,即通过增大腔耗散率,能加速系统的冷却过程.对于强耦合系统,随着耦合强度的增加,平均声子数出现周期性的振荡,且随着腔耗散率的增大而快速的减小,最后达到一个冷却极限.相反,对于弱耦合体系,平均声子数随着腔耗散率的增大而快速的增大,而后达到一个稳定的平衡态,且随着耦合强度的增大,不会出现周期性的振荡.因此,在弱耦合系统中,增大腔耗散率有可能会加速系统的热过程. The dynamical cooling process of a cavity opto-mechanical system is investigated by a master e- quation. The mean phonon number is calculated using the covariance approach. Firstly, the effect of dif- ferent cavity dissipation rate on the mean phonon number is discussed in the strong coupling system. Then the variation of mean phonon number changing with different parameters in the weak and strong coupling system is compared. For strong coupling regime,the mean phonon number oscillates periodically with,the increase of coupling strength and it decreases fast as the cavity dissipation rate increases. Final- ly,it reaches a cooling limit. In the weak coupling regime,the mean phonon number increases fast as the cavity dissipation rate increases and it reaches equilibrium in the end.
出处 《吉首大学学报(自然科学版)》 CAS 2015年第1期21-27,共7页 Journal of Jishou University(Natural Sciences Edition)
基金 Project supported by the National Science Foundation of China(10647132) Scientific Research Fundation of Hunan Provincial Education Department,China(10A100)
关键词 光机械 动力学冷却:声子 dynamical dissipative cooling, mean phonon number, strong coupling system
  • 相关文献

参考文献25

  • 1CHAN J,MAYER ALEGRE T P,AMIR H,et al.Laser Cooling of a Nano Mechanical Oscillator into Its Quantum Ground State[J].Nature,2011,478:89-92.
  • 2SHEARD B S,GRAY M B,MOW-LOWRY C M,et al.Observation and Characterization of an Optical Spring[J].Phys.Rev.A,2004,69(5):051 801.
  • 3BRAGINSKY V B,STRIGIN S E,VYATCHANIN S P.Parametric Oscillatory Instability in Fabry-Perot Interferometer[J].Physics Letters A,2001,287(5/6):331-338.
  • 4KIPPENBERG T J,ROKHSARI H,CARMON T,et al.Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity[J].Phys.Rev.Lett.,2005,95:003 901.
  • 5ARCIZET O,COHADON P F,BRIANT T,et al.Radiation-Pressure Cooling and Optomechanical Instability of a Micromirror[J].Nature,2006,444(7 115):71-74.
  • 6SCHLIESSER A,DEL’HAYE P,NOOSHI N,et al.Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction,[J].Phys.Rev.Lett.,2006,97(24):243,905.
  • 7THOMPSON J D,ZWICKL B M,YARICH A M,et al.Strong Dispersive Coupling of a High Finesse Cavity to a Micromechanical Membrane,[J].ArXiv:0707.1724(2007).
  • 8POGGIO M,DEGEN C L,MAMIN H J,et al.Feedback Cooling of a Cantilever’S Fundamental Mode Below 5mK[J].Phys.Rev.Lett.,2007,99(1):017 201.
  • 9MARSHALL W,SIMON C,PENROSE R,et al.Towards Quantum Superpositions of a Mirror[J].Phys.Rev.Lett.,2003,91(13):130 401.
  • 10LIU Y C,XIAO Y F,LUAN X S,et al.Dynamical Dissipation Cooling of a Mechanical Oscillator in Strong-Coupling Optomechanics[J].ArXiv:1303.3657(2013).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部